
Applications 

The present chapter is concerncd with applications of the concepts developed 
in Chapters 1 to 5 to production planning problems in thc manufacturing and 
process industries, to the evaluation of investment projects, and to resource 
allocation problems that are subject to different kinds of uncertainty. 

In Section 6.1 we discuss how schcduling problcms arising in make-to-order 
asscnibly environments can be modelled as resourcc-constrained project sched- 
uling problems. For different product structurcs, we considcr the definition of 
appropriate minimum and maximum time lags ensuring a non-preemptive 
cxccution of overlapping operations. 

Section 6.2 is devoted to a hierarchical three-stage approach to small-batch 
production planning using resource allocation methods from project man- 
agement. The approach comprises the mastcr production schcduling, multi- 
level lot sizing, and temporal plus capacity planning stages. At all levels, thc 
scarcity of resources is taken into account, which differentiates this approach 
from most production planning and control systems used in practice. The 
lacking integration of capacity aspects is the essential reason for the generally 
poor performance of the latter systems. 

When scheduling batch plants in the process industries, a variety of tech- 
nological peculiarities havc to be taken into account. In contrast to manufac- 
turing, the batch processing times arc mostly indcpendcnt of the batch size 
and the intermediate products must be stocked in dedicated storage facilities. 
In addition, intermediate products may be perishable and to guarantce the 
purity of output products, the processing units have to be cleaned between 
the execution of certain operations. In Scction 6.3 we dcal with a two-phasc 
method for production scheduling in the process industries, which decom- 
poses the problem into a batching and a batch scheduling problem. For givcn 
primary rcquirements, the batcliing phasc providcs thc numbcrs and sizcs of 
the batches to be produced. Subsequently, the batches are scheduled on the 
proccssing units in the batch scheduling phase. Thc batching problcm can bc 
formulated as a mixed-integer linear program of polynomial size. By using 
the concepts of renewable and cumulative resources in combination with the 
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supplerrients from Chapter 5, tlie batch scheduling problem can be modelled 
as a resourcc-constraincd project scheduling problem. 

In practice, it is customary to evaluate investment projects based on 
the net present value criterion. The maximum net present value of a time- 
constrained investment project can, e.g., be computcd by using the steepest 
descent method for convexifiable objective functions discussed in Chapter 3. 
In literature, however, it is commonly acccpted that often the discount rate to 
be applied (i.c., the rcquired rate of return) cannot be deterniincd with suffi- 
cient accuracy. Morcover, the project deadline may be subject to negotiations 
between the investor and his customers. In Section 6.4 we show how using tlie 
steepest descent approach, the project net present value can bc rcprcsented 
as a function of the discount rate and project deadline. On the basis of this 
function, investment projects with unccrtain discount rate can be evaluated 
for a variable project deadline. 

Throughout our previous discussion we have supposed that data such as ac- 
tivity durations, time lags, and rcsource requirements are dctcrministic quan- 
tities. Clearly, this is a simplifying assumption, which ncverthclcss is justified 
in many cascs whcn the projcct data can bc forecast reliably and srnall de- 
viations from schedulc do not seriously affect the execution of the project. 
Sornetimcs, howcver, the lattcr conditions arc not met, in particular when 
coping with long-term projects like in the building industry or with produc- 
tion scheduling problenis where machines and equipmcnt may be subject to 
disruption. It is then expedient to takc uncertainty into account already when 
scheduling the project or to adapt the schedule in a suitable fashion during 
its implementation. In Section 6.5 we propose two deterministic strategies for 
coping with uncertainty in project management. The anticipative approach 
consists in scheduling the project in a way that the impact of perturbations 
is minimized. Alternatively or additionally, one may use a reactive approach, 
wllcrc the project is rescheduled after each disruption and the objective is to 
minimize tlie changes with respect to the previous schedulc. 

6.1 Make-to-Order Production Scheduling 

We consider the processing of a given set of customer orders in a multi-level 
makc-to-order manufacturing environment, where no inventories are built up 
for future sale. At first, we rccall some basic concepts from materials rcquirc- 
rncnts planning (see, e.g., Nahmias 1997, Sect. 6.1). We assume that each final 
product consists of several subasscmblics, which in turn may contain several 
conlponents from lowcr production levels. Let Pf be the set of all final prod- 
ucts ordered and let P be thc sct of all (intermediatc or final) products 1 
undcr consideration. Generally speaking, the product structure of a firm can 
be represented as a gozznto graph G = (P, A, a )  with nodc sct P .  Arc sct A 
contains an arc ( I ,  1') wcighted by znput coeficient all, E W if all, units of 
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product l are directly installed into one unit of product 1'. Pf coincides with 
the set of all sinks of G. 

Now let xl E Z>o denote the gross requirements for products 1 E P .  The 
gross requirements-zl for final products l E Pf arc equal to the primary 
requirements dl given by the customer orders. The gross rcquirements xl for 
intermediate products 1 can easily be obtained by a bill of materials explosion, 
i.e., by solving the systcm of lincar equations xl = dl +C( l , l , )EA all'xl, (1 E P ) .  
Since there are no stocks available, the gross requirerncnts xl coincide with 
the amounts ql of products 1 to bc manufacturcd. 

Each product 1 E P must be processed on machines of diffcrcnt types k in a 
prescribed order, which is given by the process plan of product I. Scvcral iden- 
tical machines of each type k (k-machines, for short) may bc available. The 
processing of a batch of product 1 on a k-machine is referred to as an operation, 
which is denoted by kl. The execution of operation kl requires a (sequence- 
independent) setup time dkl during which the machine is occupied. For what 
follows wc assume that no items of product 1 arc nccded for installing the 
machine. In addition, we suppose that the production is performed accord- 
ing to a single-lot strategy, i.e., all units of a product are processed in one 
batch of sizc xl. The latter assumption is gcncrally met in make-to-order pro- 
duction sincc cach product is manufactured in response to a customer ordcr, 
and splitting the batches would incur additional setup times without saving 
considerable holding cost. Hence, the processing time of operation kl is 

whcrc u k ,  E W is the unit processing time needed for producing one itcm of 
product 1 on a k-machine. 

The make-to-order production scheduling problem consists in finding an 
opcration schedule such that no two operations overlap in time on a machine, 
the opcration sequences given by thc process plans are observed, a sufficient 
amount of input products is available during the execution of cach opcration, 
and somc objcctivc function (e.g., the makespan) is minimized. In the follow- 
ing, we show how the production scheduling problcm can bc modelled as a 
resource-constrained project scheduling problem with renewablc and cumula- 
tive resources. The model is based on the previous work by Giinther (1992) 
and Neumann and Schwindt (1997). 

For each operation kl we introduce one real activity, also denoted by kl, 
whose duration pkl is given by (6.1). A machine type k is identified with a 
renewable resource k E RP. Resource capacity Rk equals the number of k- 
machines available. Each activity kl requires one unit of resource k .  

Project network N is obtained by exploding each node 1 E P of gozinto 
graph G into the respective (directed) path from the initial operation kl to 
the terminal operation k'l in the process plan of product 1 (see Figure 6.1). 
Thc arcs (1,l') E A are then replaced by arcs (k'l, kl'l') linking the terminal 
operation k'l of 1 with the initial opcration k"l1 of 1'. Moreover, all initial 
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operations of products at the lowest production level are connected with the 
project beginning event 0, and the terminal operations of the final products 
are connected with the project termination event n + 1. Finally, backward arc 
(n -f-1,0) is added. 

U 

Fig. 6.1. Project network without arc weights arising from gozinto graph 

We proceed by assigning weights Ski^kw to the arcs {kl^ k'l') of N. The 
arcs emanating from node 0 are weighted with 0 and the arcs terminating 
at node n -\- 1 are weighted with the duration of the respective initial node. 
The weight (5̂ +1,o = —d is chosen to be the negative maximum makespan 
allowed. Now let kl and k'l be two consecutive operations in the process 
plan of product I. At first, we consider the case where Uki < Uk'i, which is 
depicted in Figure 6.2. Clearly, we may start the execution of operation k'l 
when the preceding operation kl has been completed. From Figure 6.2 it can 
be seen, however, that much time can be saved if we allow for overlapping 
operations. The processing of the first item of product I on the /c'-machine 
can then be started as soon as the first item on the /c-machine has been 
completed without causing any idle time on the fc'-machine. Hence, instead of 
adding a precedence constraint between kl and k^l, we introduce a time lag of 
^ki,k'i = '^ki-\-'^ki — '^k'l < Pki uuits of time between the starts of operations kl 
and k'l. The time lag ensures that at any point in time where k^l is in progress, 
a suflicient amount of product I has already been processed on the /c-machine. 
Note that, as shown in Figure 6.2, time lag Ski,k'i niay even become negative, 
in which case we have a maximum time lag of —Ski^k'i units of time between 
operations k'l and kl, 

k' 

k 

k'l uk'l 

] 
"̂  äkl,k'l kl ukl . t 

Fig. 6.2. Overlapping operations kl and k'l with Uki < uy, 
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The case where Uki > Uk'i is illustrated in Figure 6.3. Here, s tar t ing opera
tion k'l at the completion of the first item of product / on the A:-machine would 
mean tha t after the processing of the first item on the fc'-machine, the required 
second item from the /c-machine is not finished. Thus, we synchronize both 
operations in a way tha t the last item on the fc'-machine is processed after 
the completion of operation kl, i.e., Ski^k'i = '^ki + xiUki - {xi - l)uk'i - 'dk'i-

I 
k' 

k 

ä kl,k'l J k'l uk'l 

kl ukl _^ t 

Fig. 6.3. Overlapping operations kl and k'l with Uki > u^n 

In sum, between two consecutive operations kl and k'l belonging to one 
and the same product I e P, we introduce the time lag 

S , ^ f '^ki + Uki - "dk'U if "^ki < Uk'i .g 2) 
^ '̂̂ '̂  \ '^ki + xiUki - {xi - l)uk'i - 'dk'u otherwise 

which is the smallest lapse of t ime tha t guarantees tha t operation k'l need 
not be interrupted because no items are available. 

In practice, it is often expedient to transfer items in batches from one 
machine to another. The transportation lot size yi E N for product / G P 
is then specified by the size of pallets or containers used for the t ransport 
of /. In addition, we suppose all machines of a given type k to be grouped 
in a /c-shop, where tkk' € Z>o denotes the transfer time from the k- to the 
/c'-shop (implicitly, we have supposed until now tha t yi = 1 and tkk' = 0 
for all products I and all machine types k^k'). Formula (6.2) can easily be 
adapted to the case of general t ransportat ion lot sizes and transfer times by 
noting tha t the items now arrive at the /c'-shop in transfer batches of size yi. If 
Uki < Uk'h this means tha t the first batch is conveyed 'dki+ViUki units of t ime 
after the start of kl, whereas for Uki > Uk'u Vi items of product / remain to 
be processed on the fc'-machine after the completion of kl. In both cases, the 
respective transfer t ime tkk' must be included. We then obtain the following 
formula for the t ime lag Ski^k'i between consecutive operations: 

^kl.k'l ={ '^ki + yiUki - 'Ok'i + tkk', if Uki < Uk'i 
H- xiUki - {xi - yi)uk'i - 'dk'i + tkk' 'kl otherwise 

(6.3) 

Note tha t yi = xi corresponds to nonoverlapping product processing, where 
(6.3) provides the same value for both cases Uki < Uk'i and Uki > Uk'i-

Next, we consider the transition from the terminal operation kl in the 
process plan of a product / to the initial operation k'l' in the process plan 
of a succeeding product /' with (/,/') G A. We assume tha t /' is the only 
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product containing items of product 1. In particular, the latter assumption 
is always fulfilled if the product structure is linear or convergent, i.c., if the 
gozinto graph G is an intrec. The case of common parts, which are installed 
into different products l', is studied below. To simplify writing, we establish 
the convention that yl/all, is integral, which means that all items of product 1 
needed for the production of one unit of product 1' arc transferred at the 
same time. The first item of product 1' cannot be processed before all! items of 
product 1 have been completed on the k-machine. If the time all,ukl needed for 
producing all, items of 1 is less than or equal to unit processing time uktl,, we 
can start the processing of 1' as soon as the first transfer batch of product 1 has 
been conveyed from the k- to the kt-shop. Otherwise, we start the processing 
of the last yl/all, items of product 1' on machine k' after the last transfer of 
yl items of product 1 from the k- to the kt-shop. Hence, the time lag Skl,kfl, 
between terminal operation kl and initial operation k'l' is chosen to be 

81;~ + Y ~ U M  - 2 9 1 c / ~  + t ~ ,  if allfukl < ukrl 
Skl,k'l' = flk1 + alllxllul;l - ( ~ 1 1  - E ) u l c / ~  - Iqk'l/ + tkk,,  otherwise (6.4) 

Note that formula (6.3) may be interpreted as the special case where 1' = 1 
and all, := 1. 

We now turn to gcncral product structures containing common parts 1 E P. 
The presence of common parts leads to an asszgnment sequence problem, where 
we have to decide on the order in which completed items of product 1 are al- 
lotted to succeeding products l'. For a given assignment sequence, appropriate 
time lags may then be computed in analogy to the case of a convergent prod- 
uct structure. For details we refer to Neumann and Schwindt (1997). In the 
latter reference, a procedure for finding a suitable block-structured assignment 
sequence has been devised, where all items allotted to one and the same prod- 
uct 1' are processed consecutively. For that case, time lags Skl,k,l, can again 
be written in closed form. 

Alternatively, common parts can be dealt with by introducing cumulative 
resources. This approach, which has not been considered by Neumann and 
Schwindt (1997), offers the prospect of being independent of an assignment 
sequence to be specified in advance. Let 1 E P be some common part. We 
again consider the case where all items of 1 being assigned to  some product 
are processed one after another, and for simplicity we assume that 1 is in- 
stalled into two products, say, 1' and 1". At first, we identify product 1 with 
a cumulative resource 1 E R Y  with zero safety stock and infinite storage 
capacity R1. We then decompose a copy of operation kl into two auxiliary op- 
erations kl' and kl'' with durations pkl~ = all,zpukl arid pkl,, = all,,xl,,ukl to 
be executed on the same fictitious kmachine (which must be represented by a 
separate renewable resource & with capacity Ri = 1). To ensure that after the 
setup of the k-machine, operations kl' and kl" are processed in parallel with 
operation kl, we add the time lags bkl,kl, = 6kl,kl,, = dkl ,  Skl,,kl = pkl, - pkl, 
and bkl,~,kl = pkl" - pkl. Because kl' and kl" cannot overlap, they must be 



6.2. Small-Batch Production Planning in Manufacturing Industries 147 

processed consecutively without any delay in between. The start events of 
both operations kl' and kl" replenish the cumulative resource by all,xl, and 
all , ,xp units, and the start events of initial operations k'l' and kl'l" in the 
process plans of products 1' and 1" deplete the inventory of 1 by a l l ~ x p  and 
alpxl, ,  units. Eventually, we introduce time lags dkl',k'l' and dkl",lc"l" of type 
(6 .4 )  between the auxiliary operations k1' and kl" and the respective initial 
operations k'l' and k"ll', which guarantce that a sufficient amount of product 
1 is available when starting operations k'l' and k1'1''. 

6.2 Small-Batch Production Planning in Manufacturing 
Industries 

In this section wc review a capacity-oriented hicrarchical planning method 
for small-batch multi-level production planning in manufacturing industries, 
which has been proposed by Neumann and Schwindt (1998). An earlicr version 
of this approach is describcd in Franck et al. (1997). We consider the three 
planning stages capacitated master production scheduling, multi-level lot siz- 
ing, and temporal plus capacity planning (in the original paper, an additional 
fine planning stage has been included). Thc optimization problems arising 
at the capacitated master production scheduling and temporal plus capacity 
planning stages can be formulated as resource-constrained projcct schcduling 
problems. Alternative approaches to hierarchical production planning have, 
e.g., been devised by Carravilla and de Sousa (1995), Schneewcia (1995), Drexl 
and Kolisch (1996), Schneewcia (2003), Ch. 6, and Kolisch (2001b), Ch. 4. El- 
ements of capacity-oriented production planning and control systems have 
becn discussed in Drexl et al. (1994). 

At thc stagc of capaci tated mas ter  product ion scheduling, a master 
production schedule (MPS) has to be determiricd, which translates the pri- 
mary requirements for final products into monthly production ordcrs for final 
products and rnain components such that the workload of work centers is as 
smooth as possible over time. An even utilization of the work centers helps 
to avoid expensive capacity adjustment mcasures and facilitates the deter- 
mination of fcasible solutions at subsequent planning stages, where explicit 
resource constraints have to be takcn into account. The planning horizon of 
this first stagc is usually about one year comprising twclvc periods of one 
month each. 

For the final products thc amounts to bc produced and corresponding 
month-precise dclivery datcs are given by the customer orders. We assume 
that all customer ordcrs must bc met on time. From the order quantities of 
final products and the product structure of the company, the gross require- 
ments for main components at lower production levels can be computed by a 
bill of materials explosion. To obtain the net requirements, we subtract the 
corresponding available stocks. 
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To schedule the production of the final products and main comporients 
(rcferred to as m a i n  products in what follows), we model the problem of de- 
termining an appropriate MPS as a resource levelling problem with, e.g., the 
total squared utilization cost as objective function. To this end, we first de- 
fine a project with renewable resources for each individual customer order. 
The production of the net requirement for each main product i of such a 
customcr ordcr is regarded as an activity i of the project. The duration pi of 
activity i results from summing up thc sctup and processing times for prod- 
uct i and thc components of product i at lower production levels. To obtain 
the minimum time lag d z i n  between the start of activity i and the start of 
any subsequent activity j in the product structure, some buffer for waiting 
times arising whcn scheduling the components of all production levels has to 
be added to pi. This time buffer can bc cstimatcd by using conccpts from 
queueing theory (scc Sohner 1995, Ch. 3). The renewable resources required 
for carrying out the activities of the project coincide with the respective work 
ccnters involved. Thc rcsourcc rcquirernents of product i are assumed to bc 
distributed uniformly ovcr the exccution time pi of activity i .  

The project networks for all customer orders are thcn joined together to 
make a multi-project network by adding the project beginning and termination 
nodes O and nfl and connccting nodes O and n f l  with all initial and tcrmir~al 
activities, respectively, of the individual project networks. The backward arc 
(n + 1 , O )  corresponding to tllc project deadline 2 is wcightcd by -2 = -A, 
where A denotes the planning horizon (typically about one year). A delivery 
date di for some product i can be modelled by a maximum time lag d g u x  = 
- 
di - p i  between the project start and the start of activity i. 

The objcctive function of the resource levelling problem can be chosen to 
be any of the objective functions dealt with in Subsection 2.3.2. A solution S 
to the resource levelling problem provides month-precise milestones for the 
production of the gross requirernents for the main products. 

At the stage of multi-level lot sizing, the main products arc dccomposed 
into intermediate products for which weekly production quantities (also called 
lots or batches) are computed. In the lot sizing model, the planning horizon of 
roughly thrcc months is divided into periods of one week each. The production 
orders for the main products, which define the primary requirernents of the 
lot sizing model, are given by the MPS. 

The production of the intermediate products requires several resources. 
Each resource corresponds to a group of machines. The processing of a product 
on a resource necessitates a setup of the resource, which takes a setup time 
and incurs a setup cost. Additional costs arise from stocking products. Setup 
and proccssing times are given in time units (for example, hours). For a given 
resource, the aggregate per-period availability corresponds to the workload in 
time units which can bc executed by tlie machines of the corrcsponding group 
within one period. The objcctivc is to determine lots for the intermediate 
products such that no backlogging occurs, the per-period availabilitics of all 
resources are observed in all periods, and tlie sum of setup and inventory 
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holding costs is minimized. This problcm represents a multi-level capacitated 
lot szzing problem, for which Tempclmcicr and Derstroff (1996) have devclopcd 
the following Lagrangean-based heuristic. By relaxing the inventory balancc 
and capacity constraints, a decomposition of thc original problem into scveral 
single-level uncapacitated lot sizing problems of thc classical Wagner-Whitin 
type is obtained, which can be solved efficiently by dynamic programming 
(cf. Wagclmans ct al. 1992). Violations of the relaxed constraints arc takcn 
into consideration via a Lagrangean pcrialty function, whose multipliers are 
iteratively updated in the course of a subgradient optimization proccdure. 

Intermediate products may be further broken down into individual com- 
poncnts. At the stage of tempora l  plus capacity planning, the production 
of those components has to be scheduled on groups of idcntical machines for 
cach wcek (period of the lot sizing stage). The weekly gross rcquirements for 
the individual components can be found by a bill of materials explosion from 
the lots for intermediate products computed at the lot sizing stage. Since all 
lots have to be processed within one week, we aim at minimizing the maxi- 
mum completion time of all operations, i.e., the makespan. As has been shown 
in Section 6.1, the latter production scheduling problem can be modelled as 
a project duration problem with renewable and cumulativc rcsources. 

Since at the lot sizing stage, only aggregate per-period capacities of re- 
sources have been taken into account, it may happen that the makespan found 
at the temporal plus capacity planning stage exceeds the dcadlinc of one week. 
In that casc, we have to re-perform lot sizing such that the size of a t  lcast one 
lot is reduced. This can bc achicvcd by dccreasing the aggregate capacity of 
rcsources whose capacity has been violated, which corresponds to a feedback 
mechanism originally proposcd by Lambrccht and Vanderveken (1979) for thc 
spccial case of a job shop environment. 

6.3 Production Scheduling in the Process Industries 

In this section we are concerned with production scheduling in the process 
industries, where similarly to the case of manufacturing dcalt with in Sec- 
tion 6.1, final products arise from scveral successive transformations of in- 
termediate products. In contrast to manufacturing, however, whcrc a limited 
numbcr of picce goods arc proccssed on machincs, in the process industries the 
transformations arc performed by chemical rcactions of bulk goods, liquids, 
or gases on processzng unzts such as rcactors, heatcrs, or filters. The trans- 
formation of input products into output products on a dedicated processing 
unit is called a task. Each task may consume several input products and 
may produce several output products, whose amounts may be choscn within 
prcscribed bounds. Perishable products must be consumcd in the space of a 
given shelf life time, which may be equal to zero. In the latter case, the in- 
termediate product cannot be stocked. In addition, the storablc intcrmcdiatc 
products must be stockcd in dedicatcd storage faczlztzes like tanks or silos. 
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That is why storage problems play an important role in the process industries 
(see, e.g., Schwindt and Trautmann 2002). Further peculiarities encountered 
in the process industries are cyclic product structures, sequence-depcndcnt 
cleaning times on processing units, and large processing times, which may 
necessitate the explicit consideration of breaks like night-shifts or weekends. 

Throughout this section we assurnc that the production is operated in 
butch mode,  which means that at tlie beginning of a task, the input products 
are loadcd into thc processing unit, and the output becomes available at thc 
termination of the task. The case of continuous production modc can be dealt 
with by using the concept of continuous cumulativc rcsources introduced in 
Scction 5.4. As a rulc, the production is organized according to batch mode if 
small amounts of a large number of final products are required (whereas the 
continuous production mode is typical of basic rnatcrials industry such as oil or 
dycstuff industries). The combination of a task and the corresponding quantity 
produced is called a batch. An oper.ation corresponds to the processing of a 
batch. Since the batdl sizes are limited by the capacity of the processing units, 
a task may bc performcd morc than once, rcsulting in several corresponding 
operations. In contrast to manufacturing, the processing tinies of operations 
are gencrally independent of the respective batch sizcs. 

The production scheduling problem to be dealt with consists in allocating 
processing units and storage facilities over time to the production of given pri- 
mary requirements such that all operations are completed within a rriininlum 
makespan.  This objective is particularly important in batch production, where 
often a large number of different products are processed on multi-purpose 
equipmcnt (cf. Blomcr and Giinther 1998). In this case, the production plant 
is configured according to the set of production orders rcleascd. Before process- 
ing the next set of production orders, the plant has generally to be rearrangcd, 
which requircs the completion of all opcrations. 

There is an extensive literature dealing with production scheduling in the 
process industries. Most of the solution approaches discusscd are based on 
time-indexed or continuous-time mixed-integer programming formulations of 
the problem, cf. e.g., Kondili et al. (1993), Pinto and Grossmann (1995), 
Blomer and Giinther (1998, 2000), or Burkard et al. (1998). For a detailed 
review of literature, we rcfcr to Blomer (1999), Sect. 4.2, and Schwindt and 
Trautmann (2000). 

Thc spccial feature of the approach by Neumann ct al. (2001), which wc 
shall discuss in what follows, is the decomposition of the production scheduling 
problem into a batcl~ing and a batch scheduling problcm. A similar technique 
has been used by Brucker and Hurink (2000) for solving a related produc- 
tion scheduling planning problem. This decomposition offers the prospect of 
markedly decreasing the sevcrc computational requirements incurred by solv- 
ing tlie entire production schcduling problcm at once. Thc hatching phase 
gencrates appropriate batches, which in the course of the batch scheduling 
phasc are subsequently scheduled on the processing units subject to inventory 
constraints. The batching probleni can be formulated as a mixed-integer lin- 
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ear program. The batch scheduling problem can bc viewed as a multi-modc 
resource-constrained project scheduling problem with rencwable and cumula- 
tive resources, scquence-dependcnt changeover times, and calendars. 

We first deal with the batching problem. Batching converts the given 
primary requirements for final products into individual batches for tasks, 
where the objective is to minimize the workload, i.e., the total amount of 
work to be performed on the processing units. For each task we determine a 
collection of batches such that all primary requirements can be satisficd, there 
is sufficient capacity for stocking the rcsidual inventories after the completion 
of all operations, the prescribed bounds on the batch sizcs arc observed, and 
the workload to be processed is minimum. 

Wc arc going to formulatc the batching problem as a mixed-intcgcr lincar 
program (see Schwindt 2001 arid Neumann ct al. 2002). Let T be the set of 
all tasks s, and let U be the set of all processing units k. Us C U is the set 
of all processing units on which task s can bc cxecuted. By pks we designate 
thc processing time of task s on proccssing unit k E Us.  The mean proccssing 
timc of task s on any processing unit k E Us is ps = xkEU, pks/lUs 1, and - 
v ,  = [CkEu, d/pk,l is an uppcr bound on the number of batches for task s 
which can be executed in the planning period [0,2]. For each task s E T, 
a lowcr bound q and an upper bound gs on the batch sizc are given. The 
lower bound ge&ally arises from technological or cconomical requirements, 
whereas the upper bound cquals thc capacity of the respectivc processing 
units. 

By P we again denote the set of all products 1 to bc produced, and dl is the 
primary requirement for product 1. Each storable product 1 E P is stockcd in 
a dcdicated storagc facility of capacity q. For simplicity we assumc that thcre 
are no initial stocks of products 1, that a sufficient amount of raw materials 
is available, and that no safcty stocks have to be taken into account. Each 
product 1 E P arises as output of somc tasks s E T ,  and each intermcdiate 
product 1 E P is also input to some other tasks sf E T. The analogue to 
the input cocfficients in manufacturing are the input and output proportions 
-1 < al, < 1, which providc the proportions of products 1 in the input or 
output, respectively, of task s.  We have al, < 0 if 1 is an input product of 
s and al, > 0 if 1 is an output product of task s. For products 1 that are 
neither consumed nor produced by task s, we set al, := 0. For what follows 
wc assume that the proportions al, cannot be varied (Neumann et al. 2002 
have considered the general case of flexible input and output proportions). 

The batching problem can now be formulated by introducing, for each 
task s E T, v ,  continuous variablcs q$ 2 0 (p  = 1,. . . , u s )  with the following 
meaning. If the number of batches for task s is grcatcr than or equal to p, qf 
providcs the sizc of the p-th batch and q$ = 0, otherwise. In addition, we need 
binary variablcs xf with x:+' < x/:. (p  = 1 , .  . . , v ,  - 1), where xf = 1 indi- 
cates that there exists a p-th batch for task s and xf = 0, othcrwise. The total 
workload to be processed then equals C s E T p s  x T = l  xf (rccall that the pro- 
cessing time of a batch is iridcpcndent of the batch size). The linking betwccn 
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variables qf and xf can be achieved by the inequalities qf/?j, I xt I qf/qs, 
which at the same time ensure that the batch sizes are between thc lower and 
upper bounds q and g,. 

al,qf is the-8ncrease in the inventory of product 1 after one execution of 
task s (which is ncgative if 1 is an input product of s ) .  The quantity of product 1 
remaining on stock after the execution of all batchcs cquals CsET uls C>=l q f ,  
which must not be less than the prinlary requirements dl for product I .  On 
the othcr hand, thc residual amount of product 1 after thc delivery of the 
demands must not exceed the storage capacity cl for product 1. 

In sum, the batching problem can be stated as the following mixed-integer 
lincar program: 

A feasible solution (q, x) to batching problem (6.5) provides a set of operations 
to bc scheduled on thc proccssing units. For cach task s E T, we have C,vl'=l xf 
corrcsponding opcrations. 

We now turn to the batch scheduling problem, which consists in allo- 
cating thc rcsources to thc operations over timc such that the processing of all 
batches is completed within a minimum amount of timc, i.e., the makespan is 
minimized. A variety of technological and organizational constraints have to 
be taken into account. A task generally requires different types of resourccs: 
processing units with sequence-dependent cleaning times, input products, and 
storage facilities for output products. The availability of these resources is lim- 
ited by capacities and inventories. Break calendars specify time intervals dur- 
ing which specific tasks cannot be processed. Certain tasks can bc suspcnded 
during a brcak (e.g., packaging), whcreas othcr tasks (e.g., chemical reactions) 
cannot be interrupted at all. Some tasks may be executed on altcrnativc pro- 
ccssing units differing in speed and cleaning times. Finally, there may be 
perishable intcrmediate products, which cannot be stored. In what follows we 
develop a resource-constrained projcct scheduling model for the batch sched- 
uling problem, which has been discussed in Ncumann ct al. (20036), Sect. 2.16 
(see also Schwindt and Trautmann 2000 and Neumasm et al. 2002, who have 
proposed similar models for batch scheduling). 

Analogously to the casc of makc-to-order production dealt with in Sec- 
tion 6.1, the execution of all operations can be viewed as a project, where 



6.3. Production Scheduling in the Process Industries 153 

the makespan to be minimized corrcsponds to the project duration Sn+l. For 
each operation we introduce one real activity i E V a .  The activity durations pi 
are equal to the processing times of the corresponding tasks. In addition, we 
introduce two cvents g, h E Ve for each operation i ,  representing the start and 
the completion of i. Minimum and rnaximum time lags dz" = dm"" = 0 and 

29 

dTrL = di;rx = pi ensure that y occurs at the start and h a t  the completion 
of 2 .  

Each operation is executed on a. proccssing unit. Wc combine identical 
processing units to form a pool. Each pool is modelled as a renewable resource 
k E RP. Processing units are identical if they can operate the same tasks with 
thc same processing and clcaning timcs. The requirement rik of activity i 
for resource k equals 1 if operation i is carried out on a processing unit of 
pool k and 0, otherwise. The resource capacity Rk is equal to the number of 
proccssing units in the corresponding pool. 

The cleaning times between consccutivc opcrations on a proccssing unit 
can bc modelled by introducing sequence-dependent changeover times between 
the activities (cf. Section 5.2). The changcovcr time 19fj between two activities 
i and j on renewable rcsource k E R P  equals the cleaning time after operation i 
if j requires a cleaning of resource k .  Whcn chccking the changeover-feasibility 
of somc schedule S, the lower capacities of all arcs in the flow network equal 
0 or 1 because r i k  = 1 holds for all activities i requiring resource k .  Hence, 
the corresponding minimum-flow problem can be solved in ~ ( n l @ ~ ( s ) l )  time 
by augmenting path algorithms (cf. Ahuja et al. 1993, Sect. 6.5). 

Ccrtain operations cannot be in progress during breaks. We model breaks 
by introducing an activity calendar bi for each real activity i E Va (cf. Sec- 
tion 5.1). If operation i cannot be processed during breaks, bi(t) = 0 exactly if 
time t falls into a break. For thc remaining activities i E V", wc have bi(t) = 1 
for all t E [o, dl. 

Some tasks s E T can be executed on altcrnativc processing units k E U, 
belonging to different pools. For each corresponding activity i ,  we introduce 
one cxccution mode m, for each alternative processing unit operation i can 
be executed on (cf. Section 5.3). The requirements for renewable resources as 
well as thc durations and changeover times then refer to individual execution 
modes instead of activities. 

Intermediate storage facilities can be modelled as (discrete) cumulative 
resources. We identify each intcrmcdiate product 1 to be stocked with one 
cumulative resourcc 1 E R Y  with safety stock Rl = 0 and storage capac- 
ity ?& = q. Thc requirements of start and completion events g, h E V" of 
operations i for resource 1 can be determined as follows. Assume that oper- 
ation i corrcsponds to the p-th execution of task s.  If 1 is an input product 
of task s, i.e., uls < 0, then r,l = alsqf. If 1 is an output product of s, i.c. 
al, > 0, we have r,,l = alsqf. Note that the integrality of resourcc rcquirc- 
ments r ,~,  rh l  E Z may necessitate a subsequent scaling of all requircmcnts 
and storage capacities by some factor c E Q, which does not affect the time 
complcxities of the solution algorithms discussed. 
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Finally, we turn to perishable intermediate products. We only considcr the 
case where a pcrishable product must be consumed immediately. The casc of 
general shelf lifc timcs can be modcllcd by introducing auxiliary events and 
curnulativc resources (see Scllwindt and Trautmann 2002). Let 1 be a perish- 
able output product produced by some operation i .  Then there must exist 
some operation j that immediately consumes thc amount of 1 arising at the 
completion of operation i .  This can be ensured by introducing a minimuni 
and a maxinluni time lag dy'" d;:"" = pi pulling the start of j to the 
completion of I, provided that therc is a onc-to-one corresponderice between 
operations producing and consuming pcrishable products. The lattcr rcquirc- 
nlent can easily be intcgratcd into the batching problem and is generally met in 
practicc bccause otherwise small deviations of the realizcd from the predicted 
processing times would most often imply the loss of perishable substances. If 
thc condition is not met, the immediate consumption of a perishable inter- 
mediate product can be enforced by introducing a corresponding curnulativc 
resource 1 with & = = 0. 

Table 6.1, which is taken from Neumann et al. (2003b), Sect. 2.16, sum- 
marizes the input data of a batch schcduling problem and their respective 
countcrparts in thc resourcc-constraincd project schcduling model. 

Table 6.1. Batch scheduling vs. project scheduling 

Batch scheduling Project scheduling - - 

Operations Activities 
Makespan Project duration 
Pools of identical processing units Renewable resources 
Cleaning times Sequence-dependent changeover times 
Breaks Activity calendars 
Alternative processing units Multiple execution modes 
Intermediate storage facilities Cumulative resources 
Perishable intermediate products Minimum and maximum time lags, 

cumulative resources 

Based on the above decompositiori of the production scheduling problem 
into batching and batch scheduling, Sclwindt and Trautmann (2000) have 
been able to provide a feasible solutiori to a benchmark problem from industry 
submittcd by Westcnbergcr and Kallrath (1995) for the first time (see also 
Kallrath 2002). The latter case study covers most of the featurcs occurring 
in the production scheduling problem of batch plants. Ncurriann et al. (2002) 
have shown that the decomposition approach also comparcs favorably with 
monolithic time-indexed mixed-integer linear programming formulations of 
thc problem. 
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6.4 Evaluation of Investment Projects 

In this section we discuss a paramctric optimization proccdure, which has 
been proposed by Schwindt and Zirnmerrnann (2002) for evaluating invest- 
merit projects with rcspect to different project deadline and discount rate 
scenarios (see also Zimmermann and Schwindt 2002). Projcct managers arc 
frequently confronted with tlie probleni to decide whether some given invest- 
ment project should be pcrforrned or to select one out of several mutually 
exclusive invcstmcnt projects from a given portfolio. For tlie assessment of 
investmcnts, the net present value criterion is well-established in research and 
practicc (scc, e.g., Brealey and Myers 2002, Ch. 5). In classical preinvestrnent 
analysis, investments are specified by a stream of payments, i.e., a series of 
payments with associated payment times. Given a stream of payments and 
a proper discount rate, the net present value of tlie project is obtained by 
summing up all payments discounted to thc project beginning (case (a) in 
Figure 6.4, where cxogenous parameters are written in italics). 

Case (a) Casc (b) Case (c) 

payments D 
payment t imes D 

lpayme1 

discount rate D 

Fig. 6.4. Evaluation of investments and investment projects 
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In case of investment projects, thc payment timcs arc no longer given in 
advancc but are subject to optirnizatiori. An investment project consists of 
a set of evcnts each of which is associated with a payment. Moreover, there 
are prcscribed minimum and maximum time lags between the occurrence of 
evcnts. Thus, the stream of payments results from maximizing the net present 
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value of thc project subject to tlic temporal constraints that are given by the 
rninirnuni and maximum time lags (casc (b) in Figure 6.4). 

The formulation of the latter optimization problem presupposes the knowl- 
edge of the required rate of return (i.e., the discount rate) for discounting the 
payments arid the specification of a maximum project duration (i.c., the proj- 
ect dcadlinc). When dealing with rcal invcstmcnts in material goods like in 
thc building industry, however, often neither is the propcr discount rate to be 
applied known with sufficient accuracy nor is the projcct dcadline fixed when 
the investment project must be evaluated. The required rate of return is a 
thcorctical quantity and can only be estimated (scc Brcaley and Myers 2002, 
Ch. 23). The project deadline generally arises from negotiations bctwecn the 
investor performing the project and his customers. The parametric optimizu- 
tion approach by Scliwindt and Zirnmermann (2002) providcs the maximum 
project net prcsent value as a function of the discount ratc and project dead- 
line chosen. The rcsulting net present value curve can then scrve as a basis for 
thc decision of the investor, which depends on his individual risk preference 
(casc (c) in Figure 6.4). 

Lct Ve bc thc set of project cvents, including thc project beginning 0 
and the project termination n + 1, the start events of project activities, and 
milestones at the completion of subprojects. The project events and thc corre- 
sponding prescribed time lags among them can be representcd by an event-on- 
node network N = (V", E, S) with nodc set V", arc set E, and arc weights 6ij 
for (i, j) E E (see Subsection 1.1.2). Each event i E Ve belonging to an ac- 
tivity start is associated with a (negative) disburscmcnt cf < 0 for bought-in 

f supplies or outsidc scrvices. Progress payments cj > 0 arise when subprojects 
with milestones j E Ve have becn finishcd. Progress payments generally re- 
fer to the direct cost which is incurrcd by the activities of the corresponding 
subproject (cf. Daynand and Padniari 1997). 

Given a discount rate CY > 0 and a project deadline 2, thc time-constrained 
net present value problem reads as follows, whcre the project deadline 2 is 

- 
specified by arc (n + 1,O) E E with weight 6,,+l,o = -d: 

Maximize C" (S) := 1 cf e-"" 
i E  V e  

subject to Sj - Si > 6ij ((i, j) E E) (6.6) 

so = 0 

Let S$ denote the fcasiblc region of problcm (6.6) for projcct deadline 2 and 
let C* be thc corresponding optimal objective function valuc. A timc-fcasiblc 
schcdule S with maximum net present value Ca(S)  = C* can be determined 
by the steepest descent method from Subsection 3.2.2, where f (S)  = -Ca(S). 

Until now we have assumed that discount rate a and projcct dcadlinc 2 
arc exogenous parameters. As we have mentioned above, however, the proper 
discount rate a can only be estimated and the project deadline d may be 
subject to negotiations. Thus, for an adcquate cvaluation of thc investmcnt 
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project it is necessary to know the projcct nct prescnt value for a rangc of 
rclevant values of a and d. In the sequel, we describe a paramctric optimization 
procedure that determines the nlaximurn project net prcsent value C* as a 
function of discount ratc a and project deadline 2. This algorithm extends a 
method by Grinold (1972), who has studied the dependcncy betwccn C* and 
the project deadline d. Clearly, since Sf,' > S$ if dl > 2, C* is nondccreasing 
in d. 

The following considcrations are based on two basic observations that de- 
rive from the study of schedulc scts and objective functions in Scctions 2.2 
and 2.3. First, since thc net prcsent value objective function is lincarizable, 
there always exists an optimal solution S to thc timc-constrained net prcsent 
value problem (6.61 that is a vertex of the feasible region S$ of (6.6). Second, 
cach vcrtex S of S$ can be rcpresentcd by a spanning tree G = (V", EG) of 
project network N. 

Thc basic idca for computing net present value functzon 

C* : [0, c o [ x [ E S , + ~ , w [ - +  

with C*(a ,d)  = max{Ca(S) I S E $1 is to cover its domain by a finite 
number of sets M such that on each of thosc sets, function C* can be specificd 
in closed form. Clearly, C* is a closed-form function on subsets M of its 
domain whcrc the active constraints for optimal schedules S arc thc same 
for all (a, d) E M (and thus optimal schedules S can be represented by one 
and thc same spanning trec G of N). For given spanning tree G, wc call an 
c-maximal connected set M with the lattcr property a vulzd~ty domazn of G. 
Now let U,, be thc node set of the subtree which results from G by deleting 
arc (2 ,  j) and does not contain node 0. Recall that arc ( 2 , ~ )  E EG is called 
a forward arc if it is oriented in direction of the unique path from node 0 to 
node j in G, and a backward arc, otherwise (see Scction 4.1). In addition, let 
CG(S) be the net present value of the evcnts from set UZ3 given schedulc S .  
The following four remarks indicate how to cornpnte the validity domains M 
of spanning trecs G belonging to optimal schedules. 

Remarks 6.1 

(a) Given a and d, vertex S of S$ is optimal if and only if there exists a 
spanning tree G representing S such that for each arc (i, j) E EG, it holds 
that C,", (S) > 0 if arc (2, j) is a forward arc and C,",(S) < 0 if (i, j) is a 
backward arc. The latter condition is equivalent to the requircmcnt that 
thcrc does not exist a feasible ascent direction z at S (see Subscction 3.2.2). 
Hcncc, thc set U of all cvcnts that are shifted in time whcn modifying 
projcct dcadlinc d coincidcs with set Un+l,o if backward arc (n+ l ,  0) E EG 
and is empty, otherwise. 

(b) Givcn discount ratc a > 0, a spanning tree G belonging to an optimal 
vertex S of S$ does not change whcn modifying project deadline 2, un- 
til a temporal constraint S, - S, > S,, with ( i , j )  $ EG becomes activc. 
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This property is immediate from the binary monotonicity of objective 
function C" (see Subsection 2.3.1). 

(c) Given deadline d, a spanning tree G bclonging to an optimal vertex S of 
S$ does not change when modifying discount rate a, until for some arc 
(i, j) E EG1 net present value CG(S) changcs in sign. This property is a 
consequence of (a). 

(d) When modifying deadline 3 for fixed spanning trcc G, it follows from (b) 
that the dcadlinc for which a new temporal constraint bccomcs active 
is independent of discount rate a.  Symmetrically, when modifying dis- 
count rate a for fixed G, the discount rate for which CG (S) = O for some 
(i, j )  E EG does not depend on deadline 2. This can be seen as follows. 
Let S' be an optinlal vertex belonging to spanning tree G arid dcadline zt .  
Then for given arc (i, j )  E EG, 

Now recall that set U either coincides with set Un+l,o or is void. As 
a consequence, nodes i and j necessarily belong to the same set U or 
V \ U unless (i, j )  = (n  + 1,O). For U = Un+l,o we have Uij = U if 
(i, j) = (n + 1,O), Uij C U if i ,  j E U, and Uij n U = 8 if i , j  @ U .  This 
means that independently of set U and arc (i ,  j) wc have (I)  Uij n U = 8 
or (2) Uij \ U = 8. In case ( I ) ,  it follows from (6.7) that CG(St) = CG(S) 

and in case (2), equation (6.7) providcs C$(St) = ~-"@-')c"(s). 23 In 
sum, for each (i, j )  E EG it holds that Cg(S1) = O precisely if CG(S) = 0. 

For a given spanning tree G, the nct present value function C* takes the 
form 

where schedule S is any optimal schcdulc that is spccified by spanning tree G 
and U is the set of all events shifted when modifying 2. If (n + 1,0)  @ EG and 
thus U = 0, function C* is constant in project deadline d. 

The amount by which 2 can be increased until a temporal constraint bc- 
comes binding is 

&(G) = min{Sj - Si - I (i ,  j )  E E \ { ( n  + 1 , O ) )  : i E U, j E Ve \ U) 
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Analogously, for thc amount by which d can bc decreased, we obtain 

The spanning tree G' for an optimal schedule S' to project deadline d' = 
- - 
d + a+(G)  or 2' = d - a-(G) can be constructed without re-performing 
any optimization by first, adding the arc (i, j) for the ncw active tcmporal 
constraint to G and second, deleting an oppositely directed arc (g, h) with 
minimum absolute net present value IC;,(S1)I in the resulting (undirected) 
cycle in G. 

We now turn to the problem of finding the sniallest discount rate a' > a 
where some C$ (S) with (i, j) E Ec changes in sign. Let a& < a;j < . . . < a& 
denote all discount rates aij > a. such that for given optimal schcdulc S, 

~ ~ y . 1  (S) = C C $ P .  = 0 
h E  u,, 

Each of those discount rates aij corresponds to an intcrnal rate of return for 

the payment stream given by payments c i  for h E UZj arid schedule S. Thus, 
discount rates aij can be determined by one of thc standard algorithms for 
the calculation of internal rates of return (see, e.g., Zlieng and Sun 1999). Thc 
following condition is necessary and sufficient for a changc in sign of C$ (S) 
at a' = aij , where Aa := min{al. - a, a$ - cutj, . . . , a,vj - a;' '): 23 

For each set U,, , we calculate the smallest discount rate a,, > a for which 
(6.9) and (6.10) arc satisficd. An optimal schcdule S' for discount rate a' := 
min(,,,)EE, at3 then results from dclaying cvents h E U,, by a+(G)  time units 
if (i, 3) is a forward arc of G or from putting events h E U,, forward by a-(G) 
time units if ( i , ~ )  is a backward arc of G. Thc corrcsponding spanning tree 
G' can be determined analogously to the case where deadline d is varied. 

In summary, each spanning tree G is valid for a rectangular set M which 
can be specified by the bottom left corner (a ,d)  and the top right corner 
(al,d') (see Figure 6.5). For given a and d, the values of a' and d' can be 
computed as described above. On the validity domain M for G,  thc net prcscnt 
value function can bc writtcn in the closcd form (6.8). 

Algorithm 6.1 provides a proccdure for computing all bottom-left corners 
(a, 2) of scts M along with the corresponding spanning trces G that uniquely 
define function C* on sets M. Q is a list of triples ( a , &  G) sorted according 
to nondecreasing discount rates a, ties being broken on the basis of incrcasing 
deadlincs d. For convcnicncc wc again put min 0 := oo. How to find an appro- 
priate initial discount ratc a0 > 0 is described in Schwindt and Zimmcrmann 
(2002). 
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deadline 

I 
I I I I I discount rate 

Fig. 6.5. Validity domain M for spanning tree G 

Algorithm 6.1. Computation of net present value function 

Input: Event-on-node network N = ( V " ,  E ,  6), cash flows cf for all events i E V ' ,  
initial discount rate ao > 0. 

Output: Set C of triples ( a ,  z, G).  

compute spanning tree G belonging to optimal schedule for 2 = ES,+1 and 
f f  = C Y O ;  

initialize list Q := ((0, ES,+l, G ) )  and set of triples C := ( ( 0 ,  ES,+l,G)); 
while Q # 8 do 

delete first element ( a ,  2, G )  and all other elements ( a ,  ., G )  from list Q; 
repeat 

determine a' := mi11{a,~ I (z, j )  E EG, aZ3 satisfies (6.9) and (6.10)); 
if a' < m then 

construct the spanning tree G' belonging to a' and 2; 
add triple (a' ,& G') to Q and C ;  

if a+(G) < m then 
set 2' := 2 + a+(G);  
construct the spanning tree G' belonging to CY and ;i'; 
if there is no triple (.,;i', G') in list Q then add triple (a ,d ' ,  G') to C ;  
set 2 := ;i' and G := G'; 

- 
else put d' := ca; 

until 2' = m; 
return C ;  

6.5 Coping with Uncertainty 

In this section we propose two deterministic strategies for coping with uncer- 
tainty in resource allocation problems. When executing a project, unforeseen 
downtimes of resources, staff time off, reworking time, late delivery of raw 
materials or bought-in parts, or imprecise time and resourcc estimations may 
cause considerable deviations from the schedule determined. Basically, there 
are two ways of taking uncertainty into account when performing the resource 
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allocation. First, we may anticipate deviations from predictive data by includ- 
ing thc knowledge of uncertainty into the scheduling decisions. Second, when 
implementing thc schcdule, we may also react on disruptions in a way mini- 
mizing the impact of the required adaptations. An overview of different ap- 
proachcs to project scheduling under unccrtainty is givcn by Demeulemeester 
and Herroelen (2002)) Chs. 9 and 10, and Herroelen and Leus (2OO5), including 
stochastic, fuzzy, robust, and reactive project schcduling. Robust and reactive 
methods for project or production schcduling are reviewed in Herroelen and 
Lcus (2004b) and Aytug et al. (2005), respectively. 

Substantial work has bccn donc in the arca of (anticipative) stochastic 
prqject scheduling problem, wherc activity durations are modclled as stochas- 
tic variables and onc attempts to minimize the expected value of a regular 
or locally regular objective function (see Mohring 2000 and Uetz 2003 for 
overvicws and Stork 2001 for an in-depth treatment of the project duration 
problem). Algorithms for stochastic project scheduling are based on thc con- 
ccpt of scheduling policies, which may be rcgarded as a specific application of 
the theory of stochastic dynamic programming to scheduling problems. Var- 
ious classes of policies have bccn developed, which show a differcnt behavior 
with respect to robustness and computational requircmcnts. In principle, the 
policies studied define (ordinary or disjunctive) precedencc relationships in- 
ducing feasible strict orders in the set of real activitics. During the project 
execution, an activity is started as soon as all of its predecessors in that strict 
order have been completed. If we deal with arbitrary nonregular objcctive 
functions, those policies cannot be applied because it is generally no longcr 
optimal to start activities at their earliest time- and resource-feasible start 
times. 

An altcrnative anticipative approach to coping with uncertainty in plan- 
ning problems refers to the concept of robust plans (see Scholl 2001, Ch. 4). 
We say that a plan is robust if it tcnds to require only minor revisions during 
its implementation. In project scheduling, a robust schedule may be defincd on 
the basis of the free floats of activities as follows. For the moment we assumc 
that only temporal constraints have to be observed. How to integrate resource 
constraints into this approach will be explained below. In Subsection 1.1.3 we 
have defined the concepts of early and late free floats with respect to the earli- 
est and latest schedules. Whcn implcrnenting a schedule S, we may regard the 
activities as being "frozen", i.e., ESi = LSi = Si for all i E V. In that case, 
the early free float EFFi of an activity i E V with rcspect to schedule S is 
thc maximum amount of time by which thc start of activity i can bc delayed 
given that any other activity j can be begun at its previous start timc Sj. 
Synlmetrically, the late free float LFFi with respect to schedule S is the max- 
imum amount of time by which the start of activity i can be advanced given 
that any other activity j can be begun at its previous start times S,. Hence, 
a schedule that maximizes the (weighted) sum of all early and latc frec floats 
contains thc maximum (wcighted) temporal buffcrs for shifting activities in 
time without affecting the start timcs of any other activity. Such a schedule 



162 6. Applications 

can be computcd by minimizing thc convex objective function f of the total 
weighted free float problem (see Subsection 2.3.1) with 

f  ( S )  = w  a x  S + 6  - min [S, - 
icv ( . i , i ) ~ E  ( i , j ) ~ E  

whcre weights w f  E N can bc chosen to reflect the degree of uncertainty with 
respect to start time Si. The time-constrained total wcighted free float prob- 
lem can bc transformed into a tigc-constrained project scheduling problcm 
with a linear objcctive function f  by introducing, for each i E V, two aux- 
iliary activitics i' and il' where ( 1 )  Sil > S j  + Sji for all ( j , i )  E E and ( 2 )  
S,U < S j  - for all ( i , j )  E E. Conditions ( 1 )  and ( 2 )  can be expresscd via 
additional arcs ( j ,  i l )  with wcights djit = 6,i for all ( j ,  i )  E E and arcs ( i l ' , j )  - 
with weights = 6i j  for all ( i ,  j )  E E. Lincar objective function f  is then 
given by ?(s) = CiEv w f ( s i ,  - S p ) .  A similar model for time-constrained 
robust project scheduling under a probabilistic scenario has been studied by 
Herroelen and Lcus ( 2 0 0 4 ~ ) .  The objcctive function considered in the lattcr 
paper is the expcctcd wcighted deviation in start times between thc realized 
schedule and baseline schedule S ,  where it is assumed that no activity i is 
started bcfore its prcdictivc start tinlc Si. 

We now drop our assumption of infinite resource availability. In the pres- 
ence of resource constraints, the free floats depend on the way in which re- 
source conflicts arc resolvcd. Similarly to stochastic project scheduling, thc 
conflict resolution strategy can be spccified as a feasible relation p  in thc 
set V of all activities (cf. Subsections 2.1.1 and 2.1.2).  Thc feasibility of p  
implies that in combination with the temporal constraints, the precedence 
constraints among real activities and among events given by pairs (2 ,  j )  E p  
guarantee that the resource constraints are satisfied. Thus, by substituting 
project network N  into relation network N ( p )  and minimizing f on relation 
polytope S T ( p ) ,  we obtain a fcasible robust schedule that maximizes the total 
weighted frec float for the givcn set of precedence constraints. It remains to 
show how to determine a feasible relation p  such that the minimizer S of f 
on S T ( p )  also minimizes f  on the set S of all feasible schedules, i.e., such 
that S is a feasible schedule with maximum total wcighted free float. First, 
we notice that when replacing project network N  with relation network N ( p ) ,  
the objective function to be minimized turns into fP : ST + R with 

f p ( S )  = w j (  max [S, + 651 - min [Si - 6 $ ] )  
iEv  (.?,i)EEUp (i,j)EEUp 

whcre 6;% and 6: denote the weights of arcs ( j ,  i )  and ( i ,  j )  in relation net- 
work N ( p ) .  Thus, the objective function to be minimized cxplicitly depends 
on p. From the definition of f P  it follows that f f  ( S )  < f p l ( S )  for all S E ST 
if p' is an cxtcnsion of p. I11 addition, it obviously holds that S T ( p l )  C S T ( p )  
if p1 > p. That is why the feasiblc relation p  sought can be chosen among the 
C-minimal feasible relations. The latter rclatioris can be gcncrated by using 
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a modification of the relaxation-bascd enumeration scheme given by Algo- 
rithm 3.3. At each iteration it is checked whether or not the relation p we 
branch from is feasible by finding minimum (s,t)-flows in specific relation- 
induccd flow nctworks belonging to the induced preordcr 8 = O(D(p)) (cf. 
Subscctions 2.1.1 and 2.1.2). Instead of breaking up forbiddcn active sets 
A(S, t )  we then break up maximum (s, t)-cuts U in the respective flow riet- 
works (for dctails sce Scctions 4.1 and 5.2, where we have applied similar 
tcchniqucs) . 

The problem where for given schedule S the rcsourcc allocation (i.e., an 
appropriate (s, t)-flow) is to bc determined in such a way that the expected 
weighted deviation between the realized schedule arid schedule S is minimized 
has bccn investigated by Leus and Herroelen (2004). 

Thc reactive approach is as follows. Assume that we want to minimize 
some regular or convexifiable objective function likc thc project duration, the 
total tardiness cost, the total inventory holding cost, or thc nct present value 
of the project. At first, we determine an optimal schedule S for objcctivc 
function f by using the relaxation-based enumeration scheme. We then start 
performing the projcct according to schedule S .  Each timc the schcdule be- 
comes infeasible due to the breakdown of resourccs or ovcrrun on activity du- 
rations, wc dctermine a ncw schcdule S' that first, complies with the updatcd 
constraints and second, resembles as much as possible previous schedule S .  
The reason is that we want to avoid disruptions in the project execution that 
may arise from substantial modifications of the schcdulc. The resemblance be- 
tween schedulcs S and S' may, c.g., be measured by the (weighted Manhattan) 
distance 

n(sl, s) = 11s' - sll := C ~~1s; - s,l 

where w, E W are integers specifying thc cost for shifting the start of activ- 
ity i E V by onc unit of timc. A(S1, S) coincides with the objective function 
value f ( ~ ' )  of schedule S' if f is chosen to be the total earlzness-tardiness 
cost function with duc datcs d, being cqual to completion times S, + p, and 
WP = W: = wz for all i E V. Thus, we may determine a new fcasiblc sched- 
ule S' by minimizing the total earliness-tardiness cost with respcct to previ- 
ous schcdulc S and put S := S'. In case of frequent schedule revisions, the 
computational cffort for rcschcduling the project can be markedly decrcascd 
by providing, in addition to schedule S, a feasible - relation p in set V. We 
then minimizc thc total earlincss-tardiness cost f on the interscction of re- 
lation polytope ST(p) with the updatcd feasible region S'. An appropriatc 
c-minimal feasible relation p can bc determined in the same way as for thc 
anticipative approach. 


