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Applications

The present chaptler ix concerned with applications of the concepts developed
in Cliapters 1 to § to production plamming problems in the mannfacturing and
process indnstries, fo the evaluation of investment projects, and to resonree
allovation problens that are subject to different kindy of uncertaiuty,

In Seetion 6.3 we disenss how scheduding problexs arvising in make-to-ovder
assernbly environmends can be modelled ag vesonmrce-constrained project sched-
uling problems. For different product strnctures, we consider the defimition of
appropriate mininnnn and maxinunn thne logs ensuring & non-preemptive
excation of overlapping operations.

Section 6.2 is devoted to a hievarchical three-stage approach to sinall-batch
production planning using revource allocation methods from project nan-
agement. The approach eomprises she master production scheduling, wulti-
love] lot siging, and temporal plus capacity planning slages. At all levels, the
scarcity of resources is taken into account, which differentiates this approach
from aost production planning and control systems used in practice. The
lacking integration of capacity aspects s the essential reason for the generally
poor performance of the latter systemns.

When scheduling batch plants in the procesy industries, a variety of tech-
nological peculiarities have to be Laken into accennt. In contrast to mannfac
turing, the bateh processing times are mostly independent of the batch size
and the itennediate prodacts must be stocked in dedicated storage facilities.
I addition, intermediate products may be perishable and to gnarantee the
parity of output products, the processing units have to be deaned between
the execution of certain operations. In Seetion 6.3 we deal with a two-phase
metlod for production scheduling in the process industries, which decom-
poses the problem into a batcling and a baidh sclieduling problemn. For given
primary requirements, the batching phase provides the nunibers and sizes of
the batches to be produced. Subsequently, the batches are scheduled on the
processing units in the batch seheduling phase. The batching problem ean be
formulated as o mixed-integer linear program of polynonial size. By using
the concepts of renewable and annulabive vesoirces b combination with the
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gsupplements frorn Chapter 5, the bateh schednding problom can be modelled
as a resonrce-constrained projeet schednbing problem.

In practice, it is customary to evalnate investrnent projects based on
the net present value criferion. The maxinunn uet present value of a thne-
constrained investiment project can, eg., be computed by using the steepest
degcent method for convexifiable objective functions disenssed in Chapter 3.
In literatime, however, it is commouly acceptied that often the discomt rate to
be applied {i.e, the reguired rate of veturn) canmot be defernined with suffi-
cient accnracy. Moreover, the project deadline may be snbject to negotiations
betweert the nvestor and hig cnstomers. In Section 6.4 we show how nsing the
steepest deseent approach, the project net present valne can be represented
as a funetion of the discount rate and project deadline. On the basis of this
funetion, investment projects with nucertain discount rate can be evaluated
for a variable project deadline.

Thronghont onr previous discnssion we have snpposed that data such as ace
tivity durations, thme lags, and resource regnivements are deternministic guan-
tities. Clearly, this is a chmplifying assumption, which vevertheless is justified
in many cascs when the project data can be forecash rellably and small de-
viations from sehedule do not seriously affect the execution of the project.
Soretimes, however, the latter econditions are not met, 1 particular when
coping with long-term projects like in the building industry or with produc-
tion schednling problems where machines and equipment may be snbject to
digsruption. It is then expedient fo take nncertainty into account already when
schediding the project or to adapt the schednle I a suitable fashion during
its hmplementation. I Section 6.5 we propose two deterministic strategies for
coping with uncertainty in project management. The anlicipative approach
consists in schednling the project in a way that the hupaet of perturbations
is minimized. Alternatively ov additionally, one may nse a reactive approach,
where the project ig 1escheduled after each digrnption and the objective is to
minimize the changes witll respect to the previons schedule,

6.1 Make-to-Order Production Scheduling

We consider the processing of a given set of enstomer orders in a multi-leve]
make-to-order manufacturing envivommernt, where no nventories are built np
for future gale. At fivst, we recall sone bagic concepts Drom materials requires
meuts plaming (see, e.g., Nahmiss 1997, Sect. 6.1}, We assnme that each final
product consists of several snbassonblies, which In tiny may contain several
components from lower production levels. Let P7 be the set of all final prod-
nots ordered and let 2 be the set of all (intermediate or final} produets {
under consideration. Generally speaking, the product stracture of a finm can
he represented as a gozinto graph G = (P, A, «) with node set P, Arcset A
contains an arc {{,1) weighted by fnpul cocfficient ayr & N if gy units of
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product 1 are directly installed inte one unit of product . P coincides with
the set of all sinks of G.

Now let 4 € Z=q denote the gross requirements for products { € P. The
gross requirements ; for final produets 1 € Pf are equal to the primary
requirements o; given by the customer orders. The gross requirements ; for
intermediate products { can easily be obtained by a bill of matericls explosion,
i.e., by solving the system of lincar equations my = di+3 0 e g e (L€ F).
Since there are no stocks available, the gross requirements &y coincide with
the amonnts ¢ of products 1 {0 be manufactured.

Each product I € P must be processed on machines of different typeskina
preseribed order, which is given by the process plan of product {. Several iden-
tical machiues of each type k (k-machines, for short) may be available. The
processing of & batch of produet { on a k-machine is referred to as an operation,
which is denoted by Al The execution of operation & reqnires a {sequence-
independent} sefup fime ¥y diming which the machive is occonpied. For what
{bllows we assume that uo ems of product ! arc needed for installing the
machine. In addition, we suppose that the production is performed aecord-
ing Lo a single-lot strategy, ie., all units of a product are processed in one
batch of size @;. The latter assumplion i generally et lu make-to-order pro-
duction since caeli product is manufactured in response to a customer order,
and splitting the batches wonld incur additional setup times withonut saving
considerable holding cost. Hence, the processing time of operation &l is

Prr = Fig b 2t (6.1

where g € N g the unit processing time needed for producing one itom of
produet [ on a A-machine.

The make-to-order production scheduling problem congists in finding an
operatiou sehedule such that no two operations overlap in time ou & machine,
the operation sequences given by the process plans are ebserved, a sufficient
amount of input products is available during the execution of cach operation,
and some objective function {e.g., the makespan) is minimized. In the follow-
ing, we show how the prodaction scheduling problem can be modelled as a
rescuree-constrained project scheduling problemn with renewable and cumaula-
tive resonrces. The model is based on the previous work by Giinther {1992)
and Nemmann and Schwindt {1997},

For each operation &l we introduce oue real activity, also denoted by &,
whose duration py is given by (6.1). A machine type k is identified with a
renewable resource k ¢ RP. Resource eapacity Ry equals the number of &
machines available. Bach activity &f requires ope unit of resource k.

Project network N is obtained by exploding each node | € P of gozinio
graph { inte the respective {dizected} path from the initial eperation & to
the terminal operation &'l in the process plan of product [ {see Figure 6.1).
The ares (L) € A are then replaced by ares (&1L §”I'} linking the tennal
operation &1 of I with the initial operation &I’ of I'. Morcover, all initial
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operations of products at the lowest production level are connected with the
project beginning event 0, and the terminal operations of the final products
are connected with the project termination event n+ 1. Finally, backward arc
(n+1,0) is added.

prrudied 1
T e
s =
o 7 -“:1\
\ product | //
] g L
|4 LI

Fig. 6.1. Projcct network without arc weights arising from gozinto graph

We proceed by assigning weights fg 40 to the arcs (ki &'} of N. The
arcs emanating from node 0 are weighted with 0 and the arcs terminating
at node n + 1 are weighted with the duration of the respective injtial node.
The weight 3,410 = —d is chosen to be the negative maximum makespan
allowed. Now let Al and k'l be two consecutive operations in the process
plan of product I. At first, we consider the casc where wuy; < ugp, which is
depicted in Figure 6.2. Clearly, we may start the execution of operation k'l
when the preceding operation &l has been comploted. From Figure 6.2 it can
be seen, however, that much time can be saved if we allow for owverlapping
operations. The processing of the first item of product ! on the &-machine
can then be started as soon as the first item on the %-machine has been
completed without causing any idle time on the &’-machine. Hence, instead of
adding a precedence constraint between &l and &'l, we introduce a time lag of
G it = Pt + e — Iy < prg units of time between the starts of operations &l
and A’l. The time lag ensures that at any point in time where &l is in progress,
a sufficient amount of product { has already been processed on the k-machine.
Note that, as shown in Figure 6.2, time lag & x; may even become negative,
in which case we have a maximum time lag of —dg g units of time between
operations k'l and kL

o '?‘j;;‘q l Wty ‘ |

B = Ok —( Ui I Ukl | |

il

Fig. 6.2, Overlapping operations ki and k'l with ug < ugy
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The case where ug > wug is illustrated in Figure 6.3. Here, starting opera-
tion k'l at the completion of the first item of product { on the k-machine would
mean that after the processing of the first item on the &"-machine, the required
second item from the k-machine is not finished. Thus, we synchronize both
operations in a way that the last item on the &-machine is processed after
the completion of operation El, i.c., dugpi = Pt + ziwpe — (22 — Dt — Jp.

E Oget, it '-[ B |'“H| ‘

ke 13;,; ‘ 1l ‘ ‘ ‘

- |

Fig. 6.3. Overlapping operations ki and k'l with wg; > upy

In sum, between two consecutive operations kl and &'l belonging to one
and the same product ! € P, we introduce the time lag

5 o= 1.9;;{ + Ukl — 'ﬂk’l: if (25781 E g (6 2)
NS rﬁki -+ TiUp — (3’,‘5 — 1}“‘.&”! - it)k’f‘ otherwise ’

which is the smallest lapse of time that guarantees that operation k'l need
not be interrupted because no items are available.

In practice, it is often expedient to transfer items in batches from one
machine to another. The transportation lot size yy € N for product [ € P
is then specified by the size of pallets or containers used for the transport
of I. In addition, we suppose all machines of a given type & to be grouped
in a k-shop, where tgp € Zxo denotes the transfer time from the k- to the
k'-shop (implicitly, we have supposed until now that y; = 1 and e = 0
for all products { and all machine types &, &"). Formula (6.2) can easily be
adapted to the case of general transportation lot sizes and transfer times by
noting that the items now arrive at the &’-shop in transfer batches of size y. If
g < Ugey, this means that the first balch is conveyed dg; 4 g units of time
after the start of ki, whereas for uwg; > ugsy, 4 items of product I remain to
be processed on the k'-machine after the completion of kI. In both cases, the
respective transfer time £gp must be included. We then obtain the following
formula for the time lag dg x between consecutive operations:

o g { Dt + Wrttir — Oert + tawr, i wpg < ugy _ (6.3)
; Ot + Turg — (T — yi)ven — Opp + trke, otherwise

Note that y; = 2 corresponds to nonoverlapping product processing, where
(6.3) provides the same valuc for both cases ugy < wgeq and wgg > wpeg.

Next, we consider the transition from the terminal operation & in the
process plan of a product / to the initial operation kI’ in the process plan
of a succeeding product I’ with (,{') € A. We assume that I’ is the only
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product containing Hems of product { In particnlar, the latier assmnption
is always fulfilled if the product stroctuve is Hnear or convergent, be., if the
gozinto graph G is an intree. The case of common parts, which are installed
o difforest produets I, is studied below. To simplify writing, we establish
the conventlon that yi/aw is integral, which means that all tems of produet |
needed for the production of one unit of produet I’ are transferred atl the
sarne Lime. The fivst ttem of produet I cannot be processed before agp ttems of
product { have heen completed on the b-nmachine. If the time ayprugg needed for
produching ay Hems of s less than or equal to undt processing line ugp, we
can start thie processing of I as soon as the first transfer batch of produet { has
heen conveyed from the k- Lo the K-shop. Otherwise, we start the processing
of the last w/ay Homs of product ¥ on machine & afier the last transfer of
i items of product { from the & to the &'-shop. Hence, the thne lag Sp prr
between terniinal operation & and inilial operation &'l is chosen to be

. ! . 6.4
P 4 aqexpugy - [gp = B Yupp o Gpp 4 g, otherwise (6.4)

- P 4 yrvigy ~ Fpop 4 g, 1 agrugy < ugy
Opt fortr =
thyt

Note that ferrunla {8.3) may be interpreted as the specdial case where I =
aid ayr 1= 1.

We now turn to genoral product structures containing commnon parts { € P,
The presence of common parts leads Lo an essignment sequence problem, where
we have {0 decide on the order i which compleled Htems of product [ are al-
lotted to succeeding products . For a given assighment sequence, appropriate
time lags may then be computed in analogy {0 the case of a convergent prod-
uct structure. For details we refer lo Nemnann and Schwindt (1997}, In the
latier reference, a procedure for finding a suitable block-structured assignment
sequence has been devised, where all Hemns allotied to one and the same prod-
uck I are processed consecutively, For that case, time lags 0 can again
be written in elosed fonn.

Alternatively, commmon parts can be dealt with by introducing cumulative
resources. This approach, which has not heen considered by Nenmann aud
Schwindt {1997}, offers the prospect of being independent of an assigment
sequence to be specified in advance. Let 1 € P be some common part. We
again consider the case where all items of [ being assigned to some product
are processed one after apother, and for simplicity we assmme that 1 is e
stalled into two products, say, I’ and I, At fisst, we identify product I with
a cunnulative resource [ € RY with zero salety stoek B, and infinite storage
capacity ;. We then decompase a copy of operation kil into two auxiliary op-
erations & and " with dorations pyr = agezpug and prp = agezgonug 10
be execnted on the sane fictitions k-machine {which st be represented by o
separate renewable resource b with capacity By =13, To cusure that after the
setup of the k-machine, operations ki’ and & are processed i parallel with
0])0}‘%’&-!;%0}'1 }1‘.1.. we add the lime Ez-tgs 5,{;1__&{: = (gkglkgﬂ = 19;;_{.. (Sk,{r‘_kg == el T PR,
and Sppr g = Pree — pag- Because & and B cannot overlap, they must be
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processed consecutively withont any delay in befween, The start events of
both operations k' and EI” replenish the cumulative resource by ey zp and
ayewye units, and the start events of nitial operations & and E"17 in the
process plans of products I and " deplete the mventory of 1 by gy and
aqpecepe nmits. Eventually, we introduce thne ags $u g and Sue e of type
(6.4} between the mmiliary operations AV and &I" and the respective hutial
operations ' and ', which gnarantee that a snificient amnount of product
I is avatlable when starting operations &7 and K7{7.

6.2 Small-Baich Production Planning in Manufacturing
Industries

Iix this section we review a capacity-orlented hierarchical planming method
for small-batal nudbi-level production plamsing i mannfactoring industries,
which has been proposed by Nemnans and Schwindt {1998}, An earlier version
of this approach is desaibed in Franck et al. {(1997). We consider the three
planning stages cepacitated master production scheduling, multi-level lot siz-
ing, and femporal plus capacity planning (in the original paper, an addilional
Jine plonning stage has bean inclnded). The optimization problems arising
at the capacitated master production schednling and temporal plas capacity
planuing stages can be formulated as resonrce-constrained project scheduling
problems, Albernative approaches to hierarchical produclion plamuing have,
ez, been devised by Carvavilla and de Sonsa {1995), Schueewei (18953, Drexi
and Kolisch {1996}, SchneewdB (2003), Ch. 6, and Kolisch (20015), Ch. 4. EL
crnents of eapactty-oriented production planning and control systems have
been discossed 1n Drex] ot al, {1894).

At the stage of eapacitated master production scheduling, a master
production schedule (MPS) has to be determined, which translates the pri-
mary requirernents for final products into menthly production orders for final
prodicts and main components such that the workload of work centers is ag
smooth as possible over time. An even utilization of the work centers helps
Lo avoid expensive capacity adimstment measures and facilitates the deter-
mination of feasible solutions at snbseqnent planning stages, where exphlicit
resource constraints have fo be taken mito account. The planning horizon of
this first stage s usnally abont one year comprising twelve pertods of one
month eacl,

For the final products the amomns to be produced and corresponding
month-pracise delivary dates are given by the cnstomer orders. We assnme
that all enstorer orders mst be met on thne, From the order quantlities of
final products and the prodnct stinctare of the company, the gross require-
ntents for maiu components abl lower production levels can be compnted by a
bill of materials explosion. To obtain the net requirements, we subtract the
corvesponding available stocks.
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To schednle the production of the nal products and main components
(referred to as maein products in what follows), we model the problem of de-
termining an appropriate MPS as a resource levelling problem withy, e.g., the
total squared ntilization cost as objective finction. To this end, we first de-
fure a project with renewable resonrees for each individual customer order.
The production of the pet requirement for cach main prodnet £ of such a
custormoer order i regarded as an activity ¢ of the project. The duration p; of
activity 7 resnlts from sinming np the setnp and processing thnes for prod-
net i and the components of product {1 at lower proeduction levels. Tou obtain
the mininmm time lag 4™ between the start of activity i and the start of
any subsequent activity 7 i the product structure, some buffer for waiting
times arising when scheduling the componeunts of all production levels has to
he added to p;. This time buffer can be estimated by wsing concopts from
aqueneing theory {sce Sohner 1995, Ch. 3}. The renewable resources reguired
for carrying ont the activities of the project coincide with the respective work
cenfers involved. The resonrce requirements of product 1 are assumed to be
distributed uniformly over the execniion thne py of activity i

The project networks for all enstomer orders are then joined together to
make a mulli-profect nefwork by adding the project beginming and termination
nodes 0 and n- 1 and connecting nodes 9 and n+ 1 with all inilial and terminal
activities, respectively, of the individual project networks. The backward are
{(n -+ 1,0) corresponding to the project deadline d is weighted by —d = —4,
where 4 denotes the planning horizon {typically abont one year). A delivery
date d; for some product 4 can be modelled by a maxinum time lag d1%° =
d; — p; between the project start and the start of activity 4.

The objective function of the resource levelliug problemns can be chosen to
be any of the obiective functions dealt with in Subsection 2.3.2. A solution §
to the resonrce levelling problem provides month-precise milestones for the
production of the gross requirements for the main products.

At the stage of multi-level lot sizing, the main products arc decomposed
iito intermediate prodncts for which weekly production quantities {also called
{ots or batches) are compnted. Ly the lot sizing model, the planning horizon of
ronghly three meouths s divided into perlods of one week each, The prodiction
orders for the main products, which define the primary reqnirements of the
fot sizing moedel, are given by the MPS.

The production of the mtermediate products requires several resources.
Each resource corresponds to a group of machines. The processing of a product
Ot 8 resource necessitates a setup of the resonrce, whicl) takes a setup time
and nenrs a setup cost. Additional costs arise fromw stocking products, Seftap
and processing times are given In thme yoits {for example, honrs). For a given
resonree, the aggregele per-period availabibity corresponds to the workload iy
tirne units which can be executed by the machines of the corresponding group
within one period. The objective is to determive lots for the intermediate
products such that no backlogging ocenrs, the per-period avallabilitics of all
resonrces are observed in all periods, and the swn of setup and inventory
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holding costs is minimized. This proldem represents a maulii-level capacitated
ot sizing problem, for which Tempelmeier and Derstioff {199€) have developed
the follawing Lagrangean-based henristic. By relaxing the invertory halance
and capacity constraints, a decompasition of the ariginal prablem into scveral
single-level uncapacitated lot sizing problems of the classical Wagner-Whitin
type is abtained, which can lie solved efficiently by dynamic programming
{cf. Wagchnans et al. 1882). Violations of the relaxed constraints are taken
into cansideration via a Lagrangean penally function, whase multipliers are
iteratively updated in the caurse of a subgradient aptindzatian pracedine,

Iitermediate products mayv he firther broken down ingo individual com-
poncents. At the stage of temporal plus capacity planning, the prodiction
of those components has to he scheduled on groups of identical machines far
each week {period of the lot sizing stage). The weekly grass roquirements for
the individual campanents ean he found by a bill of materials explosion fram
the lets far mtermediate products computed at the lat sizing stage. Since all
lats have ta he processed within one week, we aim at rinimizing the maxi-
i camnpletion time of all operations, e, the makespan. As has heen shown
in Section 6.1, the latter production scheduling problems can be modelled as
a project duratian problemn with renewable and cumulative resources,

Since at the lat sizing stage, anly aggregate per-period capacities of re-
sonrees have heen taken into acconmt, it ruay happen that the makespan found
at the temporal plos eapacity planning stage exceeds the deadline of one week,
In that case, we have ta re-perfariy lat siziug such that the size of st loast one
iaf is reduced. This cay he achieved Ly decreasing the agpregate capacity af
resaurces whose capacity has been violated, which correspands to a feedhack
mechanisim originally proposed by Lambreeht and Vanderveken {1979} for the
special case af a jab shop environment.

6.3 Production Scheduling in the Process Industries

I this section we are concerned with production scheduling iy the process
industries, where similarly to the case of manufacturing dealt with in See-
tian 6.1, final praduets arise fram several snccessive transformations of in-
termediate praduets, Tn cantrast to manufactnring, however, where a limited
munber of piece goods are processed on machines, i1 the process indnstries the
transformations are performed by chemical reactians of bulk goods, liquids,
o1 gases on processing units such as reactors, heators, or filters. The trans
formatian of nput products into ontput products on a dedicated pracessing
it is called a fesk Hacly task may cansume several input products and
may produce several output praducts, whose synonnts may be chosen withiy
prescribed bounds. Perishalle products must be consuned in the space of a
given shelf life time, which may be equal to zera. In the latter case, the in-
termediate product cannot be stocked. In additian, the storable termediate
praducts st be stacked in dedicated storage facilities like tanks or silos.
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That is why storage problemns play an important role i the process industries
{s0e, e.g., Schwindt and Trantmann 2002}, Further peculiarities encountered
inn the process industries are cyclic product strictures, sequence-dependent
cleaning times on processing unils, and large processing limes, which may
necessitate the explicit consideration of breaks like night-shifts or weekends,

Thraughout this section we assuime that the prodnction is operated in
bateh mode, which means that at the beginning of a task, the nput prodircts
are loaded into the processing unit, and the ontput becomes svailable at the
termmination of the task. The case of coutinnons production mode can be dealp
with by using the concept of contimmons cumnulative resources introduced in
Section 5.4, As a rule, the production is organized according to batcl miode if
sinadl amounts of 2 large mumber of final products are required {whereas the
cortimons produclion mode is typical of basic materials industry such as oil or
dyestufl industries). The combination of a task and the corresponding quantity
prodiced Is called a batch. An operation corresponds to the pracessing of a
hatch, Since the hatch sizes are Hmited by the capacily of the processing units,
a tagk may be perforined more than once, resulibg in several corresponding
operations. Ju cantrast to manufaciuring, the processing times of aperations
are generally imdependent of the respective batch sizes.

The production scheduling problem to be dealt with consists 111 allocating
processing units and storage facilities over time to the proeduetion of given pri-
mary requirements such that all operations are completed within a winimum
makespan, T'his objective is particularly important i bateh production, where
often a large wonber of differomt products are processed on multi-pnrpose
equipment {ef. Bluner and Gimther 1998}, 1n this case, the produiction plant
is canfigured according to the set of production orders released. Before process-
ing the mext set of productian orders, the plant has generally 1o be rearranged,
which requires the completion of all operations.

There is an extensive Hterature dealing with production scheduling in the
process industries. Most of the solition approaches discussed are based on
time-indexed or continmous-time mixeduinteger pragramming forpmlations of
the problem, of. eg., Kondili et sl {1883}, Pinto and Gressimann {1993},
Blsmer and Giinther {1998, 2000}, or Burkard et al {1898}, For a detailed
review of literatnre, we refer to Bléamer {1998}, Sect. 4.2, and Schwindt and
Trautapaw (2000).

"The special feature of the approach by Nenmann et al. {2001), which we
shall discuss in what follows, is the decomposition of Lthe produclion scheduling
problen into a bafching and a baich scheduling problem, A similar technique
has been used by Brucker and Hurink (2000) for selving a related produc-
oy scheduling planning prablent. This decomposition offers the prospect of
markedly decreasing the severe computational requirements incurred by solv-
irg the entire production scheduling problem at onee. The hatching phase
generates appropriate batches, which i the course of the batch scheduling
phase are subsequently scheduled on the processing mnits subject to inventory
constraints, The batching problem can be formulated ag a mixed-integer lin-
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ear prograny The batch scheduling problews can be viewed as a multi-mode
resource-constrained projoct scheduling problem with renewable and cumula-
tive resonrces, sequence-dependont changeover times, and calendars,

We first deal with the batching problem. Batching converis the given
primary requirernents for final products into individual batches for tasks,
where the objective is to winimize the workload, ie., the total smonnt of
work to be performed on the processing units. For each task woe determine a
collection of batches sueh that »ll priniary requirements can be satisfied, there
is sufficient capacity for stocking the residual luventories after the comipletion
of all operations, the prescribed bonnds oy the batcl sizes are observed, and
the workload to be processed Is minimnm.

We are going to formulste the batching problem as a mixed-integer Hnear
program {see Schwindt 2081 and Nenmann et al, 2002). Let 1" be the set of
all tasks &, and let U be the set of all processing units & U, C I is the set
of all processing units on which task s can be executed. By prs we designate
the processing time of task ¢ on processing unit ke U, ’I‘Eie nean processing
time of task s ou any processing wnit k ¢ U s 5, = ¥ &&U Pes/ W], aud
Vs = 12 ner, d/pis} is an upper bound on the munber of batches for task s
which can be exeented in the plasming period [0,d]. For cach task 5 € T
a lower bovnd ¢ and an sipper bound §, on the batch size are given. The
lower bovnd generally arises from technological or economical requirerments,
whereas the upper bound equals the capacity of the respective processing
units,

By P we again denote the set of all produets { to be prodnced, and 4 is the
primory requirement for product L Eael) storable product I € P is stocked in
a dedicated storage facility of capacity ¢. For simplicity we assinmne that there
sre no initial stocks of products 1, that a safficient amowurt of raw materials
is available, and that no safety stocks have to be taken lnfo account, Bach
prodoct § @ F arises as ontput of some tasks ¢ @ T, and each mfermediate
praduct § € P is also nput to some other tasks 5 ¢ 7. The analogue to
the inpwt cocfficlents in manudacturing are the input and ontput proportions
=1 =, < 1, which provide the proporiious of products { iu the input or
outpit, respectively, of task s We have ap < 0 i 1 is an luput prodoct of
s and e, > 03 {15 an ewtput product of task s, For prodnets [ that are
ueiti'ier caz‘rsmued noy pa’odueed by E;a:sk 5, we sel ag 1= {} For What foﬁowc;

hd.vc, wimdcmd t-h(-, general case of ﬁexabk-, mpuh (m(i (mhpnt pi()p()rti()iib)‘
The batching problem can now be formulated by introdocing, for each
task s € T, v, continuous variables ¢# > 0 (p == 1,. .., v} with the following
meaning. Zf tlie mpnber of batches for task s is gjroaivr than or equal to u, ¢¥
provides the size of the g-th batch and ¢f = 0, otherwise. In addition, we need
binary variables o# with 83 < 2 (g = 1,...,v, — 1), where o8 = 1 ind-
cafes that there exists a p-th batch for task s and ## = 0, otherwise. The total
workload to be processed then equals >~ . 7, Sob et 2 {recall that the pro-
cessing time of a batch is mdependent of the I_;catcla SM(}). The Inking between
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variables ¢ and & can be aclieved by the luequalities ¢ /5, < o8 < ¢# /.(i.s?
which at the same time ensure that the bateh sizes are between the lower and
upper bounds g, and 7,

a5 18 the increase in the wwentory of product 1 afier one execntion of
task s {which 8 negative i [ is an nput product of 8), The guantity of product {
rexnaining on stock after the exeention of all batehes equals 37 p e 2700, ¢f,
which must not be less than the primary requirements d; for product { On
the other hand, the residual amount of product 1 after the delivery of the
demands must mol exceed the storage capacity ¢ for produet [

11 sum, the batching problem ean be stated as the followhg mixed-integer
linear prograi

Ly
Minimize Z 7, Z ak
sl peum]
subject to d; < X e Z g <di b (Le P
sE€T e {6.5)
/A, S et <qifq, (sel )
ahtl < g e — 1)
e {0,1} NN
gtz 0 (seT, n=1,...,v)

A feasible solution {g, &) to batching problem {6.5) provides a set, of operations
to be scheduled on the processing unils. For each task s € T, we have z;"’_} ot
corresponding operations.

We now turn to the bateh scheduling problem, which consists in allo-
cating the resourees to the operations over time such tliat the processing of all
batches is completed within & minimum amount of tiue, Le., the makespan is
minimized. A variety of technological and organizatianal constraints have to
be taken into acconnt, A task generally requires different types of resources:
processing unils with sequence-dependent cleaning times, input products, and
storage facHities for output products. The avallability of these resources is lin-
ited by capacities and luventories. Break calendars specify line intervals dur-
ing which specific tasks cannot be processed. Cerlain tasks can be suspended
during & break (e.g., packaging), whereas othor tasks {e.g., chemical reactions)
camnat he interrupted at all. Some tasks may he exccouted on alternative pro-
cessing units differing in speed aud cleaning iimces. Finally, there may be
perishable intermediate produets, which cannot be stored. In what follows we
develop a resource-canstrained project scheduling model for the batch sclied-
uling problem, which has been discussed in Neumann ot al. {20035), Sect. 2.16
{see also Schwindt and Traptmann 2000 and Neumann b al. 2002, who have
proposed similar models for batch scheduling).

Analogously to the case of maketo-order production dealt with in Sec-
tion 6.1, the execution of all operations can be viewed as a project, where
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the makespan to be mintmized corresponds to the preject duration S,.q. For
each operation we introduce one real activity ¢ € V% The activity durations py
are equal to the processing thnes of the corresponding tasks, In addition, we
introduce two events g, it € V© for sach operation i, representing the start and
the compietion of 4. Mimmum and maximum time lags d;;m = % = G and
At = dISF = p; epsure that g ocenrs at the start and A at the completion
of .

Each operation & executed on a processing npi, Wo combine identical
processiig units to form a pool. Fach pool s modelled as a renewable resonzce
k e R7. Processing units are identical if they can operate the same tasks with
the same processing and cleaning thues. The requireient vy of activity ¢
for resonrce & equals 1 ¥ operation 7 is carried ont on a processing mnit of
pool & and G, otherwise. The resonrce capocity Hy Is equal to the number of
processing nnits in the corresponding pool.

The cleaning times between consecutive operalions on a processing unit
can be modelled by introducing sequence-dependent changeover thnes between
the activities {cf. Section 5.2). The chaugeover time ?95—‘} boetween two activities
# and § on renewable resource & € KP equals the cleaning thue after operation
if § requires a cleaning of resonrce & When checking the chiangeover-feasibility
of some schedwde 5, the lower capacities of all arcs n the How network equal

the correspouding nininmu-flow problem can be solved in O(n|0%(S)]) time
by apgmenting path algorithms {of. Alija et al. 1993, Sect. 6.5},

Certain operations cammot be in progross durhig breaks. We model breaks
hy troducing an activity calendar b; for each real activity ¢ € V® {cf. Scc-
tion 5.1, If operation ¢ cannot be processed during breaks, 5,(1} = 0 exactly if
time ¢ falls into a break, For the remaining activitios ¢ € V9, we have h{t) = 1
for all £ € [0, 4).

Some tasks s € T can be executed on alternalive processiug uuits k e U,
belonging to different pools, For each correspondhng activity {, we hiroduce
one execution wode my for each allernative processing nnit operation ¢ can
be executed on {ef. Section 5.3). The requirements for renewable resonrees as
wel as the darations and changeover thnes then refer to individusl execution
modes instead of activities.

Intermediate storage faciiies can be modelled as {discrete) cumpdative
resontrees. We ldentify eacl ntermediate prodoct [ to be stocked with one
cunntative resource { € R with safety stock ff;, = 0 and storage capac-

operations ¢ for resource § can be deternimed as follows. Assnme that oper-
ation § correspords to the peth execmtion of task s IT I is an inpul prodact
of task 8, Le, g < O, then ry = aef. If { is an output produet of 5, Le
ape = 0, we have rpp = a8, Note that the infegrality of resonrce reguire-
HIGIS 74, T € 4 may necessitate a snbsequent scaling of all vequirements
and storage capacities by some factor ¢ € @, which does not affect the time
complexities of the solution algorithims diseussed.
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Finally, we turn to perishable itermediate prodncts, We only consider the
cage where a perishable product must be consnmed lmmediately. The case of
general shelf life timey can be modelled by introduncing auxiliary eveuls and
cnnutative resources {see Schwindt and Trastmann 2002). Let { be a perish-
able autput product produced by sotne operation 4. Then there must exist
soane operation § that immediately consumes the amomt of { arising at the
completion of operation 4. This can be eusured by introducing a minimun
ad a maximm time lag dV° o d79F wop polling the start of 7 to the
completion of 4, pravided that there is a onc-to-one correspondence between
operations producing and consniming perishable products. The latter require-
ment can easily be intograted into the batehing problem and is generally met in
practice beeanse otherwise small deviations of the realized from the predicled
processing times would maost often imply the loss of perishable substances. If
the condition is not wet, the bnmediate consmmption of a perishable hter-
mediate prodiset can be enforced by introducing a correspanding comuplative

Table 6.1, wlicl is taken from Nemmann et al. {20035}, Sect. 2.16, snumn-
marizes the inpnt data of & bateh scheduling prohlemn and their respective
counterparts in the resource-constrained project scheduding model

Table 6.1. Batch scheduling vs. project schednling

Batch scheduling Project scheduling

COrperations Activities

Makespan Project duration

Pools of identical processing unils Renewsble resonrces

Cleaning iimes Sequence-dependent changeover {hnes
Hreaks Activity calendars

Alternative processing units Multiple execution modes
Intermediate storage facilities Cimulative resources

Perishable interinediate produocts Mintinmn and maximum time lags,

cnnnlative resources

Based an the above decomposition of the preduction schediding problem
into batching and bateh schednling, Schwindt and Trantmany (20007 have
beer able to provide a feasible solutioy to a benchmark problem from industry
subinitted by Westenberger and Kallrath {1995} for the first time {see also
Kallrath 2002}, The latter case study covers most of the features occurring
in the production scheduling problem of batch plauts. Nemmaum et al. {2002}
have shown that the decomposition approach also compares favorably with
moyolithie time-indexed mixed-integer linear programming formudations of
the problom.
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6.4 Evaluation of investment Projects

T this section we discass a parametric optimization pracedure, which has
been proposed by Schwindt and Zimmermann (2002} for evalnaling invest-
ment projects with respect to different projedt deadline and discount rate
scenarios (see alse Zhmnernann and Schwindt 2002}, Projoct managers are
frequently confronted with the problem to decide whether some given vest-
ment project should be perforimed or to select one out of several mmtually
exclugive nvestinent profects from a given portfolio. Por the assessmoent of
mvestinents, the net present value ariterion iy well-established in vesearch and
practice (see, c.g., Brealey and Myers 2002, Chu 5). In dassical preimvestinent
analysis, investimenty are specified by a stream of payments, f.e., a series of
payments with assaciated payment thmes. Given a stream of payments and
a propey discount vate, the net present value of the praject is obtained by
suunning up all payments disconnted to the project beguning {case {a) W
Figure 6.4, where exogenouy parameters are wrilten in italios),

Cage {a} Case {b) Cage (¢}
investment project | [ mvestment, project

g B

i . NP B
payrnents | &, payrnertly &

1) =
- temp, consiy. | & temg. constr, [> 1o

e & &

B i b

payraenis = | & " oot
pagment times o | & |optunization problem|  |optinization problem|
¥ Tk 3 54 £

3 2

g . . &

discount rate & | 2 g

: " =) 2

project deadline & | & 5

4
& kA
k- ;} i
spayi'nent stream [payment %tm’xm| §m:t; present valne £ nnction!

o

o o :
2 g g
5 g .
discount rate [> & discount vate o |5 preference [ £
ot o4 -
= =] ::3-

ine,!; prosent vaiueg }n(-xt present value! ;_;}ref(-:r(-:nce value

Fig. 6.4, Evalnation of investments and investment projects

In case of tnvestment projects, the payrnent thmes are no longer given in
acdvance but are subject o opthnization. An investment project consists of
a sob of events each of which s associated with a pavment., Moreovey, there
are prescyibed minmum and maximiam shine lags between the oconrrence of
events. Thus, the streany of payments resnlts hom maximizing the net present
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vahie of the project snbject to the temporal constraints that ave given by the
winimum and maxhnum thne lags {case {bY In Figure 6.4).

The formulation of the lafter optingization problem: presupposes the knowl-
edge of she reguired rate of refurn {Le., the discomnt rate) {or disconnting the
payments and the specification of a mastmum project duration {Le., the proj-
ect deadline}, When dealing with real investments it material goods hike in
the bnilding mdustry, however, often neither is the proper discomnt rate to be
applied knowrs with sufficient acenracy nor is the project deadiine fixed when
tie Investment project must be evaluated. The required rate of return is a
theoretical quantity aud can only be estimated {sce Brealoy and Myers 2002,
Ch 23). The project deadline generally arises from negotiations between the
investor performing the project and his enstomers. The purumetric optimizo-
tion epproach by Schwindt and Zhmnermann (2002} provides the maxinum
project pet present value as a finction of the discount rate and project dead-
line chosen. The resnlting nel present valne curve can then serve as a basis for
the decision of the investor, which depends on his individnal risk preforence
{case (¢} in Figure 6.4},

Let V° be the set of project cvents, inchiding the project beginning 0
and the project tenunination n - I, the start events of project activities, and
milestones at the completion of subprojects. 'The project events and the corre-
spounding prescribed time lags among them can be represented by an event-on-
node nefwerk N = (VO F. &) with node set V°, arc set B, and arc waights &5
for {i,7) € F (sce Subsection 1.1.2). Each event £ € V¢ boionﬁinﬁ f0 an ace
tivity start is associated with a (negative} dishnrsement {, < 0 for bought-in
snpplics or ontside services. Progress payments cj > 0 arise when subprojects
with milestones 7 € V® have been finished. Progress payments generally re-
for to the direct cost which is incinred by the activities of the correspounding
sitbproiect {cf. Daynand and Padman 1997).

Given a discammt rate o > 0 and a project deadline d, the time-constrained
net present value problem reads as follows, where the project deadline d is
specified by are {n 4 1,0) € & with weight 6,410 = = d-

Maximize (S} Z ol g
e 6.6
subject to 55— 8, = é&;; (1,7} € F) (6.6)
»S‘{} - 0

Let. ‘.‘> denote the feasible region of problem (6.6) for project deadline d and
let C* be the corresponding aptimal oblective function vahie. A time-feagible
schedide S with maximan net present value C¥(8) == C* can be determined
by the steepest descent ethod from Subsection 3,2..‘, where f{5} = ~Co (5.

Until now we have assmned that disconnt rate « and projeet deadline d
are exogenous parameters. As we have mentioned above, however, {he proper
disconnt rate « can only be estimated and the project deadline d may be
subject ta negotiations, Thus, for an adequate evalnation of the investment
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project it s necessary to koow the project net present valne for a range of
relevant valnes of o and d. In the sequel, we describe a parametric optimization
procedure that determines the maxinmun project net present valine C* as a
function of disconnt rate e and project deadline d. This algorithin extends a
method by Grinold (1972}, who has studied the dependency between C* and
the > project deadline 4. Clearly, since ST o S{f‘ i d = d, C* is nondecreasing
in .

The following considerations are based on two basic observations that de-
rive from the study of schedufe sets and objective fypctions in Scelions 2.2
and 2.3, First, since the net present value objective funetion is lincarizable,
there always exists an optimal solution § to the time-constrained nel presert
value problem (6.6) that is a vertex of the feasible region S$ of {6.6). Second,
cach vertex § of S¢ can be represented by a spanning tree G = (V¢ Eq) of
project network N,

The basic idea for computing net present value funclion

Ch [O:Oolxiﬁjsn-é—lamg """" » I

with C*{a,d) = max{C*{S) | S‘f} is to cover its domain by a finite
number of sets A such that on c,ddz of thosoe sets, function C* can be specified
in closed form. Clearly, € is a closed-form function on subsets M of itg
domain where the active coustrainis for optimal schedules 5 are the same
for all (e, d) € M (and thus optimal schednles S can be represented by one
and the same spamming Lree 7 of N} For given spanning tree &, we call an
C-maximal conmected set M with the lattor property a validity domain of G,
Now let U be the node set of the snbtree which resnits from & by deleting
are {z,7) and does not contain node 8. Recall that arc (i,7) € Eg is called
a forward arc i it is oriented in directian of the wigue path from node 0 to
node §in &, and a backward arc, otherwise (see Section 4.1). In addition, let
Cf5{S) be the net present value of the events from set Uy given schedule 5.
The following fonr remarks indicate how to compute the validity domains A
of sparming trees G belouging to optimal schedules.

Hemarks 6.1,

(a) Given « and &, vertex S of 8¢ is optimal if and only if there exists a
spaniing free G representing 5 such that for each are {4, ) € Fe. 1 holds
that C3(S5} > 0 i are (4,4} is a forward arc and CH{S) < 03f (4,5} s a
backward arc. The latter condition is equivalent to the reguirement that
there does not exist a feasible aseent divection # at § (see Subscetion 3.2.2}.
Henee, the set U of all events that are shifted in time when modifying
project deadline d coincides with set Uppr,o i backward are (n41,8} € Feo
and s emply, otherwise.

(b} Given discomnt rate o > 0, a spanning tree & helonging to an optimal
vertex S of 8¢ does nol change when modifying project deadline d, nn-
il a temporal constraint 5; - 5 2 &5 with (4,7} € Fg becomes active.
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This property is bnmediate from the binary monotonicity of objective
funetion € {see Subsection 2.3.1)

{¢} Given deadline d, a spanning tree G belongiug to an optimal vertex S of
S‘i doex rot change when wodifving discount 1ate o, nntil for some are
(i, 1) € E¢, net present valie CE(S) changes in sign. This property is a
consequence of {a).

{d} When modifying deadline d for fixed spaniing tree G it follows from (b}
that the deadline for which a new temporal comstraint becomes active
& independent of disconnt rate o. Synunetrically, when modifving dis
connt rate o for fixed G, the discount rate for which C2{8) = 0 for some

ij
{i,7) ¢ E¢ does not depend on deadline d. This ean be seen as follows,

Let & be an optiraal vertex belonging to spanning tree G and deadline o'
Then for given wre (4,5} ¢ Ee,

i { q!) - Z ne” o),

hely
— E ane’” x5 + § —<\\f>;, et - ﬁ
hell A b Us el
- —d W - .
= E e e ) 2 ere T (6.7)
hel!; \U hedl;nU

Now recall that ret U either colucides with set Unsyp or s void. Ay
a consequence, nodes ¢ and 7 pecessarily belong to the same set U or
VAU mdess (4,4 = {n+ L0} For U/ m Un!—l o we have Uy, = U

means that imit’.pendéuﬁiy of set U/ and arc {:., 3) we have {1 ) Uy MU =8
or (2} U\ U = 8. Inn case (1), it follows from (6.7} that C’”{S J o CES)

and in case (2), equation (6.7) provides C%(8") = ._‘*“’_‘”C“{S’) In
sum, for each {4, 7} € F¢ it holds that ("“{S”) = § precisely if € {5} =4,

For a given spanning tree ¢, the net present valne funciion € tukes the

forn
}*(Q"g{) - Z JE,WG‘? ,,,,, Z J{Jwﬂ(f)‘ A S}
eVl gt/
- U ST L (e St ) AR :
i L G e 4ol ! Z{"’i e (6.8}
eVl el

where schedule 8§ i any opthiinal schedule that is specified by spanning tree ¢
and U ix the set of all events shifted when modifying . f in+ 1,0} ¢ Egn and
thog U = @, funciion €7 15 constant in project deadline 4

The amonnt by which d can be ingreased nmtil a temporal constraint be-

comes binding is

oGy =mm{8; ~ S~ 8 | (5,7} e EN{{n+ 1,00} 1€ U, je VU]
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Analogonsty, for the amanmt by which d can be decreased, we olitain

The spanning tree G7 for an optimal schedule S to project deadline & =
g +ie o 3 — - s b e g 3 - o .
d+ ot Gy or & = d— o (G) can be canstructed withont re-performing
any eptimizatian by first, adding the are (4, 7} for the now active temparal
eanstraint ta ¢ and seeond, deleting an appositely directed are {g, h} with
minimum absolute net present value JC5, (S7)] in the resulting {undirected)
cycle 1 G,

We now turn to the prolilem of finding the smallest disconnt rate o > o
where same C (&) with {7, §) € g ehanges insign. Let afj < a;‘i)- << ay
dencte all disequnt rates oy > o such that for given optimal schednle 5,

Chi8) = Y et = @s)

helis;

Each of those discaunt rales oy, carrespands ta an internal rate of return for
7 i
the payment stream given by paymenis ci far h e Uy and schedule 8. Thns,
discount rates .y can lre determined by ane af the standard algarithms for
3 ] g
the calenlation of internal rates of retirn {see, e.g., Zheng and Sun 1999}, The
I3 -y . . + - - . 1 8 .
fallowing condition is neeessary and sufficient for a change in sign of 7 (5)

; LA N e T 1 20 ) N e A
at o = ayy, where Aa = min{ey; — el -y e — o b
sign ) ef e(eum Aa/BS: o gioy E ef e (ot Aa/ns, (6.10)
helly helis;

For each set U4, we calendate the smallest discount rate og; > « for which
(6.9} and {6.10} are satisfied. An optimal sehedide 57 for discount rate o’ ==
Milk; jye e iy Yhen vesnlts from delaying events € Uy; by ¢ T{G) time nnits
if (4, 7) is a forward arc of 7 ar from putting events b € Uy; forward by o~ {G)
time units if {7, 7} is a backward are of . The carresponding spanning troe
G’ can be detenmined analogously to the case where deadline d is varied.

o sunmary, each spanning tree G is valid for a rectangudar set. A which
can be specified by the hottom left corner {a,d) and the tap right carner
(o, d) {see Figure 6.5). For given o and d, the values of o and & can he
corputed as described above. On the validity domain M far G, the net prosent
value function can be written in the closed o {6.8).

Algoritlun 6.1 provides a procednre for compnting all bottonmedeft corners
(e, d) af scts M alang with the corresponding spanning trees G that nniguely
define function C* on sets M. (@ is a Hst of tripdes (o, d, () sorted according
ta nondecreasing discount rates o, ties being braken an the basis of moreasing

priate initial diseaunt rate o > 0 iz describred in Sehwindt and Zimmernann

(2002).
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deeredbire

(o', E{)

{ex, &}

T ¥ I 1 disconnd rafe

Fig. 6.5, Validity domain M for spanning tree &

Algorithm 6.1, Compntation of net present valne hinction

Output: Sot C of triples {a, 4, G}

compute spanning tree (7 belonging to optimal schedunle for d = ES,,; aund
a=a";
inlttalize list @ = {{0, BSu.1. G}} and set of triples €= {0, ESui1, G}
while Q # § do
delote first element (o, d, &) and all other clerenmts (o, - () from list €
repeat
determine of = min{ayy; | (4, ) € Fo, oy satisfies (6.9) and (6.10)};
if o < oo then
constraet the spamiing tree ¢ belonging to o and 4,
add triple (o d, &) to Q and C;
if ¢T{() < no then
set d =d -+ cT{GY;
construct the spanning tree G belonging to o and 4
if there is 1o triple (-, d', ') v list @ then add triple (o, &, G') t0 C;

return {;

6.5 Coping with Uncertainty

In this seclion we propose two defermntistic strategies for coping with mncer-
tabnhy in resource allocation problems. When executing s project, unforeseen
downtimes of resources, staff thne off, reworking time, late debivery of raw
materials or bonght-in parts, oy imprecise thne and resonrce ostimations may
canse considerable devistions from the schedile determined. Basically, there
are two ways of taking uncertainty into account when perfonuing the resource
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allocation. Firsl, we may enticipate deviations from predictive data by inchd-
ing the knowledge of uncertainty inte the schednling decisions. Second, when
implementing the schedule, we may also react on disruptions in a way bl
muzing the impact of the required adaptations. An overview of different ap-
proaches to project scheduling mider nncertainty is given by Demauleineester
and Herroelen {2002}, Chs. 9 and 10, and Terroclen and Lens {2005}, inchiding
stochastic, hizzy, robust, and reactive project schodnling, Robust and reactive
methods for project or production scheduling are reviewed in Hervoclen and
Lens (20048) and Aving et al. {2008), respectively.

Snbstantial work bas been done in the arca of {anticipative} stochastic
project scheduling problem, where activity durations are modelled as stochas-
tic variables and one attempts to minimize the expected valne of a regular
or lecally reguior objective fimction {see Mohring 2000 and Yetz 2003 for
overviews and Stork 2001 for an in-depih trestment of the project duration
preblem). Algorithms for stochastic project seheduling are based on the con-
eept of sclieduling policies, wliicl: may be regarded as a specific application of
the theory of stochastic dyuaniic progrannuing to schednling problems. Var-
ious classes of policies have been developed, which show a different behavior
with respect to robustness and compinational requivements, In principle, the
policies studied define {ordinary or disiinctive)} precedence relationships in-
dicing feasible strict orders in the set of real activities, During the project
execution, an activity is started as soon ag all of #s predecessors in that streict
order have been completed, I we deal with arbitrary nonregnlar objective
Bnctions, those policies cannot be applied becanse i is generally no longer
optimal to start activities at their earliest thme- and resonrce-feasible start
times.

An alternative anticipative approach to coping with uncertainly in plan-
ning problems refers 1o the concept of robust plans {see Scholl 2001, Ch. 4).
We say that a plan is rebust if it tonds to requive only minor revisions during
its inplementation. In project scheduling, a robust schednle may be defined on
the basis of the free floats of activities as follows. For the moment we assome
that only temporal constrahis have to be observed. How o integrate resonree
constraints into this approach will be explained below. In Sulsection 1.1.3 we
have defined the concepts of early and late free Hoats with respect to the earli-
est and latest schedules. When buplementing a schedule 5, we may regard the
activities as being “frozen” | e, ES; = LS, = 8, for all ¢ € V. In that case,
the early free float EFF; of an activity ¢ € V' with respect to schedule S is
the nmxinnmm anounnt of time by which the start of activity 1 can be delayed
given that any other activity j can be begun ab its previons start time 5.
Symunetrically, the lofe free float LEFF, with respect to schednle § s the max-
nan amoennt of the by which the start of activity ¢ can be advanced given
that any other activity 7 can be begun at its previons start thies 5;. Henee,
a schedule that maxinizes the {weiglted) sim of all carly and late free floats
contains the maximmn {weighted) temporal buffers for shifting activities in
thne withent affecting the start thnes of any ether activity. Such a schedule
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can be computed by minbnizing the convex objective funetion § of the fotal
weighted free float problem (see Snbsection 2.3.1) with

L 105 max [ G0 — min 18 — 8]}

e 3,? € (ig)eE

whore weights w;.f & N can be chiosen to reflect the degree of uncertainty with
respect to start thae 5;. The tine-constrained total weighted free Hoat prob-
lem can be transformed bito a thne-constrained project schednling problem
with a hinear objective Bimction f by introducing, for each { € V, two aux-
ary activities ¢ and ¢ whete (1} Sy > 8 + d for all (4,4) € F and (2)
Ser < 8y by for all (4, §) € E. Conditions {1} and {2) can be expressed via
additional ares (7,7} with weights 6;r = &5 for all {4,4) € F and ares (i7,7)
with weights 80y = &y for all (4,4} € £ Linecar objective function ? is then
given by f{§) = P wf (S — Spedo A similar mmodel for thme-constrained
robast project schednling nndey a probabilistic scenario has been stndied by
Hervoelen and Leus {20046}, The objective function considered in the latter
paper is the expected weighted deviation in start times between the realized
schednle and baseline schedule 5, where it 18 assumed that no activity ¢ is
started before s predictive start thne 8.

We now drop onr assumption of infinite resource availability. In the pres
ence of resource constraings, the free floats depend on the way in which re-
sonree conflicts are resolved. Shrdlarly to stochastic project schednling, the
conflict resolution strategy can be specified as a feasible relation p in the
set V oof all activities {cf. Subsections 2.1.1 and 2.1.2). The feasibility of o
imphes that in combination with the temporal constraints, the precedence
constraints among real activities and smong events given by pairs (4,7 € p
guarantee that the resonrce constrabnts are satisfied. Thus, by snbstituting
project network N into relation network N{g) and mintwizing § on relation
polytope Sp(p), we obtain a feasible robust schednle thatl maximizes the total
weighted frec float for the given seb of precedence constraints. I remains to
show how to determine a feasible relation p such that the minimizer S of f
on Syplp) also minhnizes f on the set § of all feasible schedules, bo., such
that % is a {easible schedule with maximmm total weighted frec float. First,
we notice that when replacing project network NV with relation network Nip),
the objective function to be minimized thrns into f¢ 1 8y — B with

Fo8y = > wl( max [S;+8]~ min [8; - 64))

byl {jiye kg 4 {r e fiup

where 8%, and 6f; denote the weights of ares (4,4} and (7,7} in relation net-
work N{g). Thus, the objective function to be minbnized oxplicitly depends
on p. From the definition of f7 it follows that f2(8) < f#(8) for all § € Sy
if ' is an extonsion of p. In addition, it obviously holds that Sp{p} € Sp{p)
if o 1 p. That is why the feastble relation p songht can be chosen among the
Comninimal feasible relations. The latter relations can be gencerated by nshng
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a modification of the relaxation-based enwneration scheme given by Algo-
rithin 3.3, AL each Heration it i checked whether or not the relation p we
branch from is feasible by finding minhimumm {5, 8)-flows in specific relatian-
induced flaw networks helanging to the haduced prearder § = G(IHp)) {of.
Suhsecetions 2.1.1 and 2.1.2). Instead of breaking up forhidden active sets

A(S, 1) we then break np maxbmum {8, 8-emts U iy the respective flow net.
warks {for details see Sections 4.1 and 3.2, where we have applied similar
techniques).

The prolilem where for given schedule S the resouree allocation (e, an
appropriate (s, tflaw} is to be determined b siich a way that the expected
weighted deviation between the vealized schednle and schedule § is minimized
has hieen investigated by Leus and Hervoelen {2004}

The reactive approach is as Jollows, Assiime that we want to minimize
some regular ar convexifiable objective fumction hike the project duration, the
tatal tardiness cost, the total inventary halding cast, or the net present valne
of the project. At first, we determine an aptimal schedule § far objective
function { by nsing the relaxation-hased ennmeration scheme. We then start
performing the praject acearding to sehednle 8. Each time the schedule he-
eotnes infeasible due to the breakdawn of resonrecs or avernim on activity du-
ratious, we delermine a new schedule S7 that frst, complies with the updated
constraints and second, reseinbles as mnch as possihle previons schednle S,
The reasan is that we want to avoid dismptions in the project exeention that
may arise fram substantial modifications of the schedule, The resemblance De
tween schedules § and 57 inay, e.g., be measured by the (weighted Manhattan)
distance

AL, Sy =18 — 8l =) wy| S - &
eV

where uy € N are integers specifying the cost for shifting the start of active
ity ¢ € V hy one nnit of time. 4{5", 5} coincides with the objective function
vahe f(b 1 of schedule 57 if f is chasen to be the fofal carliness-fardiness
cost funetion with doe dates d; being equal 1o completion thmes S) - p; and
wi = w} = w; for all 4 € V. Thus, we may delermine a new feasible sclied-
ule 5 by minhmizing the lotal earliness-tardiness cost with respect to previ-
ons schodule § and pul § := &7, In ease of frequent schednle revisians, the
carmputational effort for }{s{‘f}oduhng the project can he markedly decreased
by praviding, in addition to schednle 5, a feasible relatian p in set V. We
then minimize the total earliness-tardiness cost [ on the intersection of re-
latian polytope St{p) with the updated feasible region 8. An apprapriate
C-minimal feasihle relation p can be determined in the saime way as far the
anticipative appraach.



